•  021-44855640-09126852574
  • info@kahrobameghnatis.com

         

Mobile menu

قانون گوس ،شار مگنت

 

 قانون گاوس 
یکی از هدف های اولیه ی فیزیک پیداکردن روش های ساده برای حل ظاهرا مسائل پیچیده است. یکی از لبزارهای مهم فیزیک برای دست یابی به این هدف استفاده از تقارن است. برای مثال برای توزیع بار های شامل تقارن، ما می توانیم با استفاده از قانون گاوس (فیزیکدان و ریاضیدان آلمانی کارل فردریک گاوس 1777-1855) میدان الکتریکی را با انجام محاسبات کمتر بدست آوریم. قانون گاوس به جای توجه به میدان الکتریکی جزء بار، یک سطح بسته ی فرضی دور توزیع بار را درنظر می گیرد. این سطح بسته سطح گاوسی نامیده می شود و می تواند هر شکلی داشته باشد، اما شکلی که محاسبات را کمتر می کند، شکلی است که تقارن توزیع بار را تقلید می کند. شکل 23-1،در این فصل ما با استفاده از واقعیت که:
 "قانون گاوس میدان الکتریکی در یک نقطه روی سطح گاوسی بسته را به بار خالص محصورشده درون سطح مربوط می کند."
به بررسی میدان های الکتریکی روی یک سطح بسته می پردازیم.
شار الکتریکی
برای تعریف شار میدان الکتریکی، به شکل 23-2، که یک سطح گاوسی دلخواه را در یک میدان الکتریکی نشان می دهد توجه کنید. ما سطح گاوسی را به مربع های کوچکی به مساحت ΔA تقسیم کنیم (مربع ها آنقدر کوچک اند که مسطح درنظر گرفته می شوند)، و هر جزء سطح را با بردار سطح ΔA ، که برداری است عمود بر سطح گاوسی به طرف خارج سطح و بزرگی برابر با مساحت سطح، نمایش می دهیم. چون مربع ها به اندازه ی کافی کوچک هستند میدان الکتریکی E در آن ها ثابت است و شار گذرنده از سطح گاوسی شکل به صورت زیر تعریف می شود:
که بیانگر حاصل جمع شارگذرنده از تک تک مربع های تشکیل دهنده ی سطح گاوسی است. مقدار شار گذرنده از هر مربع ممکن است منفی، مثبت یا صفر باشد. اگر مساحت مربع ها کوچک و کوچکتر شوند و به حد دیفرانسیلی dA برسند، شار گذرنده از سطح گاوسی را می توانیم به صورت زیر تعریف کنیم:
علامت حلقه در انتگرال بالا به معنی انتگرال گیری روی سطح بسته است. یکای شار الکتریکی نیوتون-متر مربع بر کولن است. با توجه به معادله ی بالا شار الکتریکی عبوری از یک سطح با تعداد خالص خطوط میدان های الکتریکی عبوری از سطح متناسب است.
قانون گاوس
قانون گاوس، شار خالص یک میدان الکتریکی عبوری از یک سطح بسته را به بار خالص qenc محصور در سطح مربوط می کند:
با استفاده از تعریف شار الکتریکی، قانون گاوس به شکل زیر نوشته می شود:
معادله ی 23-4 فقط وقتی اعتبار دارد که بار خالص در خلا قرار داشته باشد. بار خالص حاصل جمع جبری همه ی بارهای مثبت و منفی محصور درون سطح است و ممکن است مثبت، منفی یا صفر شود. اگر بار خالص مثبت باشد، شار خالص به طرف خارج سطح (برون سو) است. اگر بار خالص منفی باشد، شار خالص به طرف داخل سطح است (درون سو). شکل 23-3، دو بار نقطه ای برابر و با علامت مخالف (ناهمنام) و چهار سطح گاوسی S1، S2،S3 و S4 را نشان می دهد، در:
سطح S1: میدان الکتریکی به طرف خارج از سطح (برون سو) و بنابراین شار الکتریکی مثبت است.
سطح S2: میدان الکتریکی به طرف داخل سطح (درون سو) و بنابراین شار الکتریکی منفی است.
سطح S3: در داخل این سطح بار الکتریکی وجود ندارد و طبق قانون گاوس، شار خالص عبوری از آن صفر است. مطابق شکل تمام خطوط میدان که از بالای سطح وارد شدند از پایین سطح خارج می شوند.
سطح S4: در داخل این سطح بار خالص الکتریکی صفر است. چون مقدار دو بار برابر و علامت آن ها مخالف هم است. وجود ندارد و طبق قانون گاوس، شار خالص عبوری از آن صفر است. مطابق شکل تمام خوط میدان که از بالای سطح خارج می شوند از پایین وارد سطح گوسی می شوند.
قانون گاوس و قانون کولن
شکل 23-4، بار نقطه ای مثبت q را درون یک سطح گاوسی به شکل کره به شعاع r نشان می دهد. ما سطح گوسی را به سطوح جزئی dA تقسیم می کنیم. بردار سطح dA در هر نقطه عمود بر سطح کره و به طرف خارج سطح است. با توجه به تقادن مسئله اگر بار در مرکز کره باشد، میدان الکتریکی در هر نقطه روی سطح کره مقدار یکسانی دارد و عمود بر سطح کره است. با استفاده از قانون گاوس می توانیم بنویسیم:
چون انتگرال گیری روی سطح کره انجام می شد و مقدار میدان الکتریکی روی سطح کره ثابت است، E از داخل انتگرال بیرون می آید:
انتگرال بیانگر مساحت سطج کره ای به شعاع r است، با استفاده از مساحت سطح کره (4πr2) خواهیم داشت:
که همان معادله ی است که با استفاده از قانون کولن بدست آوردیم.
رسانای منزوی باردار
قانون گاوس به ما اجازه می دهد تا قضیه ای مهم درباره ی رساناها را اثبات کنیم:
"اگر بار اضافی روی یک رسانای منزوی قرار داده شود، بار به طرف سطح بیرونی رسانا حرکت می کند. به عبارت دیگر، بار اضافی درون جسم رسانا دیده نمی شود."
شکل 23-5 (a)، یک قطعه ی منزوی از جنس مس را نشان می دهد که بار اضافی q دارد. ما سطح گاوسی را درون رسانا و نزدیک به سطح خارجی رسانا درنظر می گیریم. با توجه به اینکه میدان الکتریکی درون رسانا باید صفر باشد E=0، اگر اینگونه نباشد میدان الکتریکی به الکترون های آزاد درون رسانا نیرو وارد کرده و باعث ایجاد جریان الکتریکی در رسانا می شود. با استفاده از قانون گاوس (چونE=0) مقدار بار درون سطح گوسی برابر با صفر می شود. بنابراین بارهای اضافه شده به رسانا خیلی سریع به گونه ای توزیع می شوند که میدان الکتریکی خالص داخلی صفر شود. سپس حرکت بارها متوقف می شود، چون نیروی خالص وارد شده به آن ها صفر است. دراین حالت بار ها در تعادل الکترواستاتیکی قرار می گیرند.
رسانای منزوی با حفره
شکل 23-5 (b)، رسانای آویزانی را با یک حفره درون آن نشان می دهد. ما یک سطح گوسی اطراف حفره، نزدیک به سطح و داخل رسانا درنظر می گیریم. چون درون رسانا E=0  است، شار الکتریکی نمی تواند درون سطح گاوسی ما وجود داشته باشد. بنابراین با توجه به قانون گاوس درون سطح مورد نظر بار خالص الکتریکی وجود ندارد و بار خالصی روی دیواره های حفره قرار نمی گیرد.
میدان الکتریکی خارجی
دیدم که بار اضافی روی سطح خارجی رسانا توزیع می شود. به هر حال، برای رساناهای غیر کروی بار به طور یکنواخت توزیع نمی شود و چگالی بار سطحی σ برای رساناهای غیر کروی از ثابت نیست. به طور کلی این تغییرات چگالی بار سطحی، یافتن میدان الکتریکی تولید شده توسط سطوح باردار را دشوار می کند.
به هر حال، برای پیدا کردن میدان الکتریکی در خارج از سطح رسانای باردار با استفاده از قانون گوس، ما سطح را به اندازه ی کافی کوچک درنظر می گیریم تا دیگر انحنایی نداشته باشد و سطح تخت درنظر گرفته شود. شکل 23-6. با توجه به شکل 23-6 (b)، ما سطح گوسی را به صورت استوانه ای کوچک عمود بر سطح رسانا درنظر می گیریم که نیمی از آن درون رسانا و نیم دیگر آن خارج از رسانا است. چون میدان الکتریکی درون رسانا صفر است از نیمه ی سطح گوسی استوانه ای شکل که درون رسانا قرار دارد هیچ شاری نمی گذرد و فقط از انتهای بیرونی استوانه شار عبور می کند. ما فرض می کنیم که مساحت قاعده ی استوانه برابر با A باشد، چون A به اندازه ی کافی کوچک است، میدان الکتریکی E درون آن ثابت است، بنابراین شاری که از درون آن عبور می کند برابر است با EA. بار محصور شده درون سطح گاوسی برابر است با مقدار با موجود در سطح رسانا به مساحت A ، یا σA. بنابراین با استفاده از قانون گاوس خواهیم داشت:

بنابراین بزرگی میدان الکتریکی در بیرون رسانا متناسب است با چگالی سطحی بار رسانا.
به کاربردن قانون گاوس: تقارن استوانه ای
شکل 23-7، یک قسمت از میله ی بینهایت بلند با بار یکنواخت مثبت با چگالی λ را نشان می دهد. برای پیدا کردن بزرگی میدان الکتریکی در نقطه ای به فاصله ی r از محور میله، سطح گاوسی را با توجه به تقارن مسئله استوانه ای به شعاع r ، طول h و هم محور با میله درنظر می گیریم. در قاعده های استوانه چون بردار سطح عمود بر جهت میدان الکتریکی است، هیج شاری از قاعده ها نمی گذرد، و چون بزرگی میدان الکتریکی روی سطح جانبی استوانه ثابت است و جهت آن با بردار سطح جانبی استوانه موازی است، شار عبوری از سطح جانبی (و سطح گوسی) برابر است با:
که در آن جمله ی داخل پرانتز مساحت سطح جانبی استوانه است. بنابراین با استفاده از قانون گاوس می توانیم بنویسیم:
که در آن λh مقدار بار موجود درون سطح گاوسی است.
بنابراین بزرگی میدان الکتریکی در فاصله ی r از میله ی باردار یکنواخت برابر است با:
جهت E به صورت شعاعی و به طرف خارج از خط بار مثبت و برای خط بار منفی به طرف داخل است. معادله ی بالا همچنین به طور تقریبی میدان ناشی از یک خط باردار متناهی در نقاطی که خیلی به دو انتهای آن نزدیک نباشد را بیان می کند.
به کاربردن قانون گاوس: تقارن مسطح
ورقه ی نارسانا
شکل23-8،  قسمتی از یک ورقه نارسانا نازک و نامتناهی با بار یکنواخت مثبت به چگالی σ را نشان می دهد. برای پیدا کردن میدان الکتریکی در فاصله ی r از ورقه، ما یک سطح گاوسی استوانه ای انتخاب می کنیم به طوری نیمی هز استوانه در یک طرف روقه و نیم دیگر آن در طرف دیگر باشد، شکل 23-8 (b)، با توجه به تقارن مسئله، میدان الکتریکی عمود بر سطح ورقه است. بنابراین شار عبوری از قسمت جانبی استوانه صفر است و اگر مساحت قاعده ی استوانه برابر با A باشد، شار عبوری از هر قاعده ی استوانه برابر با EA و شار عبوری از کل سطح گوسی برابر با EA+EA است. با استفاده از قانون گاوس می توانیم بنویسیم:
که در آن σA بار محصور در سطح گوسی است.بنابراین میدان الکتریکی تولید شده توسط ورقه نارسانای نامتناهی برابر است با:
این نتیجه برای هر نقطه ای در یک فاصله متناهی از ورقه معتبر است.
دو صفحه ی رسانا
شکل23-9 (a)، قسمتی از یک صفحه ی نامتناهی رسانا با بار اضافی مثبت را نشان می دهد. با توجه به مطالب گفته شده می دانیم که بار اضافی روی سطح رسانا قرار می گیرد و چون صفحه تخت و نازک است بار به طور یکنواخت با چگالی σ1 روی دو وجه رسانا قرار می گیرد. اگر میدان الکتریکی خارجی وجود نداشته باشد بزرگی میدان الکترکی تولید شده توسط ای صفحه برابر است با E=σ1/ɛ0. و چون بار اضافیمثبت است، جهت میدان به سمت خارج از صفحه ی رساناست. شکل23-9 (b) صفحه ی مشابه را نشان می دهد با این تفاوت که بار اضافی موجود روی آن منفی است. بنابراین جهت میدان الکتریکی در آن به طرف صفحه رساناست. حالا اگر این دو صفحه را در حالتی که با هم موازی هستند به یکدیگر نزدیک کنیم. شکل23-9 (c). چون دو صفحه رسانا هستند، چینش بار ها ی اضافی در دو صفحه تغییر می کند و به علت نیروی ربایش بین بارهای ناهمنام به طرف وجه داخلی صفحات در شکل حرکت می کنند. بنابراین مقدار بار در هر وجه دو برابر حالت قبل خواهد شد و چگالی سطحی بار جدید σ در هر وجه دو برابر σ1 می شود. بدین ترتیب میدان الکتریکی در هر نقطه بین دو صفحه برابر است با:
جهت این میدان از صفحه ای با بار مثبت به طرف صفحه ای با بار منفی است. از آن جایی که باری در وجه بیرونی صفحات وجود ندارد، میدان الکتریکی در سمت چپ و راست صفحات برابر صفر است.
شکل 23-9، (a) یک رسانای نازک با بار اضافی مثبت. (b) یک رسانای نازک با بار اضافی منفی (c) دو صفحه به صورت موازی در نزدیکی یکدیگر قرار داده می شوند.
به کار بردن قانون گاوس: تقارن کروی
در این جا ما با استفاده از قانون گوس اثبات خواهیم کرد که:
"یک پوسته کروی با بار یکنواخت به ذره ی بارداری که در بیرون پوسته کروی قرار دارد به صورتی نیروی جاذبه یا دافعه وارد می کند که گویی همه ی بار پوسته در مرکز آن متمرکز شده است."
و "اگر ذره بارداری درون یک پوسته ی کروی با بار یکنواخت قرار بگیرد، نیروی خالص الکترواستاتیکی از طرف ذره به پوسته وارد نمی شود."
شکل 23-10یک پوسته ی کروی با شعاع R و بار q و دو سطح گاوسی کروی S1 و S2 را نشان می دهد. با به کار گیری قانون گاوس برای سطح S2 جایی که r≥R، خواهیم داشت:
این میدان، مشابه میدان الکتریکی تولید شده توسط یک بار نقطه ای q است. که قضیه اول را اثبات می کند.
با به کار بردن قانون گاوس برای سطح  جایی S1 که  (r<R)، خواهیم داشت:
چون درون سطح گاوسی باری وجود ندارد، بنابراین اگر باری درون سطح گاوسی قرار گیرد نیروی خالص الکترواستاتیکی از طرف پوسته به آن وارد نمی شود. که قضیه دوم را اثبات می کند.
حالا یک توزیع متقارن کروی بار با چگالی حجمی بار ρ، مانند شکل 23-11را درنظر بگیرید. در شکل23-11 (a)کل بار درون سطح گوسی کروی به شعاع r>R قرار گرفته، بنابراین میدان الکتریکی تولید شده روی سطح گاوسی در این حالت مانند حالتی است که کل بار در مرکز کره متمرکز شده باشد. معادله ی .
شکل 23-9 (b) سطح گاوسی را به شعاع r<R نشان می دهد. میدان الکتریکی روی سطح گوسی در این حالت ناشی از بار قرار گرفته درون سطح گوسی است، اگر مقدار بار درون سطح گوسی برابر qˊ باشد، میدان الکتریکی روی سطح گوسی برابر خواهد بود با:
اگر کل بار یکنواخت q درون شعاع R قرار داشته باشد. و qˊ بار قرار گرفته درون شعاع r باشد، با یک تناسب ساده می توانیم بنویسیم:

بلت درام مغناطیسی،درام مگنت



بلت درام مگنت سپراتور شرکت کهربا مغناطیس به منظور جداسازی سنگ های فرو مغناطیسی درشت تا سایز 200 میلیمتر به منظور دریافت توده كنستانتره اولیه و حذف سنگ های ناخالص درشت به عنوان اولین مرحله واحد فرآوری سنگ آهن كاربرد گسترده ای دارد.
اجزای اصلی دستگاه شامل درام مگنت، نوار انتقال مواد همراه با رولیك ها، غلطك و مكانیزم درایو دستگاه و تیغچه جداسازی قابل تنظیم می باشد.
بلت درام مگنت سپراتور حاصل مونتاژ 180 درجه آرك مغناطیسی در داخل پوسته ای از جنس استیل نگیر ضد سایش كه توسط درپوش های آلومینیومی مهار شده است میباشد.
مجموعه پوسته درام و درپوش با سرعت مشخصی در حال حركت به دور آرك مگنت ثابت می باشد. مجموعه درام از دو دریچه خروجی تشکیل شده است زمانی كه مواد ورودی روی سطح بلت درام مگنت سپراتور شارژ می شود، ناخالصی های غیر مغناطیسی در جلوی درام و در دریچه خروجی جلویی مسیر طبیعی سقوط می كنند، در حالی كه سنگ آهن جذب مگنت درام شده و بر روی پوسته درام تا آخرین نقطه حضور مگنت گردش كرده و در پشت درام تخلیه می شود.
همانطور که از اسم بلت درام مگنت مشخص است این دستگاه دارای بلت(تسمه لاستیکی)می باشد و این امر باعث حرکت یکنواخت مواد برروی سطح خود گردیده و باعث ایجاد یک فیلم مشخص برای جداسازی بهتر می گردد.
این دستگاه در دو نوع لیمز و میمز ساخته شده و قابل طراحی برای انواع خطوط می باشد.

مگنت(آهنربا)

آهنربا چیست ؟
آهن‌ربا معمولا از آهن يا فولاد ساخته مي‌شود. البته سنگ‌هايي نيز وجود دارند كه خاصيت مغناطيسي دارند. اين سنگ‌ها هميشه به سمت شمال يا جنوب مي‌ايستند و قديم از اين سنگ‌ها در سفرهاي دور و دراز براي جهت‌يابي استفاده مي‌كردند. آهن‌ربا نيز همين‌طور است و اگر بتواند آزادانه نوسان كند، به سمت شمال يا جنوب ثابت مي‌شود و به همين جهت هست كه دو انتهاي يك آهن‌ربا را قطب شمال و قطب جنوب مي‌نامند.
اگر بخواهيد قطب‌هاي شمال دو آهن‌ربا را به هم نزديك كنيد، احساس مي‌كنيد كه نيرويي آن دو را از يكديگر دور مي‌سازد. همين‌طور قطب‌هاي جنوب دو آهن‌ربا نيز يكديگر را دفع مي‌كنند.اما اگر قطب شمال يك آهن‌ربا را به قطب جنوب آهن‌ربا ديگر نزديك كنيد، مي‌بينيد كه دو آهن‌ربا به سمت هم كشيده مي‌شوند و قطب‌هاي شمال و جنوب آهن‌ربا يكديگر را جذب مي‌كنند. اين كشش و جاذبه بسيار قوي است و گاهي
اوقات جداكردن دو آهن‌ربا از يكديگر كار بسيار مشكلي است.پس بنابراين قطب‌هاي همنام يا همانند، يكديگر را دفع مي‌كنند و قطب‌هاي غيرهمنام يا متفاوت يكديگر را جذب مي‌كنند.آهن‌ربا بعضي از مواد را به طرف خود مي‌كشد و آن موادي است كه خاصيت آهن‌ربايي داشته باشند؛ مثل سنجاق، سكه، گيره كاغذ، قيچي، ميخ، سوزن و چيزهايي كه فلزي باشد.آهن‌رباها به شكل‌هاي مختلفي ساخته مي‌شوند. گاهي وقت‌ها به شكل مستطيل و بعضي‌وقت‌ها به شكل نعل اسب و يا ميله‌اي است و با دو رنگ، قطب شمال و جنوب آن مشخص مي‌شود.
از آهن‌ربا در جاهاي زيادي استفاده مي‌شود؛ به عنوان نمونه، يخچال از فولاد درست شده و به در فولادي يخچال يك آهن‌ربا چسبيده است كه باعث مي‌شود در يخچال بسته بماند و در وسايلي كه براي تزئين و زيبايي به در يخچال مي‌چسبانند، پشتش يك آهن‌ربا چسبيده است و اين باعث مي‌شود به در فولادي يخچال بچسبد.گاهي اوقات هم براي جمع‌آوري فلزات از آهن‌ربا استفاده مي‌شود. وقتي آهن يا فولاد به يك آهن‌ربا مي‌چسبد، خودش هم يك آهن‌ربا مي‌شود. اولين گيره كاغذ كه به آهن‌ربا مي‌چسبد، گيره دومي را آهن‌ربا مي‌كند و هر قدر كه آهن‌ربا قوي‌تر باشد گيره‌هاي بعدي نيز خاصيت آهن‌ربا را پيدا مي‌كنند و اين گيره‌ها به هم مي‌چسبند.يك نكته جالب درباره آهن‌ربا اين است كه اگر يك فلزي را به آهن‌ربا مدتي بكشيم، آن فلز يك آهن‌ربا مي‌شود و براحتي مي‌تواند يك گيره فلزي را بلند كند.

انواع آهنربا :
اساس کار تمام آهنرباها یکسان است، اما به دلیل کاربرد در دستگاههای مختلف ، آرایش و صنعت ، آن را به اشکال و اندازه‌های گوناگون می سازند، و لذا انواع آن از لحاظ شکل عبارتند از :
• تیغه ای
• میله ای
• نعلی شکل
• استوانه ای
• حلقه ای
• کروی
• پلاستیکی
• سرامیکی و ...

سیر تحولی و رشد :
انسانهای اولیه به سنگهایی برخورد کردند که قابلیت جذب آهن را داشتند. معروف است که ، نخستین بار ، شش قرن قبل از میلاد مسیح ، در شهر باستانی ماگنزیا واقع در آسیای صغیر «ترکیه امروزی) ، یونانیان به این سنگ برخورد کردند. بنابراین بخاطر نام محل پیدایش اولیه ، نام این سنگ را ماگنتیت یا مغناطیس گذاشتند که ترجمه فارسی آن آهنربا می باشد. سنگ مذکور از جنس اکسید طبیعی آهن با فرمول شیمیایی Fe3O4 می باشد.
بعدها ملاحظه گردید که این سنگ در مناطق دیگر کره زمین نیز وجود دارد. پدیده مغناطیس همراه با کشف آهنربای طبیعی مشاهده شده است. با پیشرفت علوم مختلف و افزایش اطلاعات بشر در زمینه مغناطیس ، انواع آهنرباهای طبیعی و مصنوعی ساخته شد. امروزه از آهنربا در قسمتهای مختلف مانند صنعت ، دریانوردی و ... استفاده می گردد.

منشا پیدایش :
کهربا شیرهای است که مدتها پیش از بعضی از درختان مانند کاج که چوب نرم دارند، بیرون تراوید. و در طی قرنها سخت شده و بصورت جسم جامدی نیم شفاف در آمده است. کهربا به رنگهای زرد تا قهوهای وجود دارد. کهربای صیقل داده شده سنگ زینتی زیبایی است و گاهی شامل بقایای حشرههایی است که در زمانهای گذشته در شیره چسبناک گرفتار شده اند.
یونانیان باستان خاصیت شگفت انگیز کهربا تشخیص داده بودند. اگر کهربا را به شدت به پارچهای مالش دهیم اجسامی مانند تکه های کاه یا رانههای گیاه را که نزدیک آن باشد جذب میکند. اما سنگ مغناطیس یک ماده معدنی است که در طبیعت وجود دارد. نخستین توصیف نوشته شده از کاربرد سنگ مغناطیس به عنوان یک قطب نما در دریانوردی در کشورهای غربی ، مربوط به اواخر قرن دوازدهم میلادی است. ولی خواص این سنگ خیلی پیش از آن در چین شناخته شده بود.

حوزه عمل :
آهنربا به طور مستقیم و غیر مستقیم در زندگی روزانه بشر موثر است و به جرات می توان گفت که اگر این خاصیت نبود زندگی بشر امروزی با مشکل مواجه می شد. از جمله وسایلی که در ساختمان آن از خاصیت آهنربایی استفاده شده است، می توان به یخچال ، قطب نما ، کنتور برق ، انواع بلندگوها ، موتورهای الکتریکی (مانند کولر ، پنکه ، لوازم خانگی و ...) ، وسایل اندازه گیری الکتریکی مانند ولت سنج ، آمپر سنج و ... اشاره کرد.

آیا آهنربا بغیر از آهن ، اجسام دیگری را جذب می کند؟
بعد از پیدایش آهنربا ، دانشمندان به این فکر افتادند که آیا آهنربا غیر از آهن ، اجسام دیگری را نیز می تواند جذب کند. پس از بررسیها و مطالعات مختلف ، سرانجام مشخص شد که آهنربا در عنصر دیگر به نامهای نیکل و کبالت را نیز می تواند جذب کند. بر این اساس به سه عنصر آهن ، کبالت ، نیکل و آلیاژهای آنها که توسط آهنربا جذب می گردد، مواد مغناطیسی می گویند. بدیهی است که سایر مواد را که فاقد این خاصیت است، مواد غیر مغناطیسی می گویند.

آهنربای الکتریکی
آهنربای دائمی با کیفیت بالا کاربردهای بسیار زیاد و مهمی در علم و انقلاب تکنولوژیک ، مثلا در اسبابهای اندازه گیری الکتریکی دارند. ولی میدانهایی که توسط آنها ایجاد می‌شود خیلی قوی نیست، اگر چه آلیاژهای مخصوصی که اخیرا بدست آمده‌اند داشتن آهنربای دائمی قوی که خواص مغناطیسی خود را برای مدت مدیدی حفظ کنند امکان پذیر ساخته است. از جمله این آلیاژها ، مثلا فولاد-کبالت است که شامل حدود 50% آهن ، 30% کبالت و مخلوطهایی از تنگستن ، کروم و کربن است.
عیب دیگر آهنربای دائمی این است که القای مغناطیسی آنها نمی‌تواند به سرعت تغییر کنند. از این نظر ، سیملوله‌های حامل جریان (آهنرباهای الکتریکی) بسیار مناسبند. زیرا با تغییر جریان در سیم پیچ سیملوله می‌توان میدان آنها را به آسانی تغییر داد. با قرار دادن هسته آهنی داخل سیملوله ، میدان آن را می‌توان صدها هزار بار افزایش داد. بیشتر آهنرباهای الکتریکی که در مهندسی بکار می‌روند چنین ساختمانی دارند.

ساخت آهنربای الکتریکی ساده
آهنربای الکتریکی ساده را می‌توان در منزل ساخت. کافی است که چندین دور سیم عایق شده‌ای را بر یک میله آهنی (پیچ یا میخ ، بپیچانیم و دو انتهای سیم را به یک منبع dc نظیر انبار ، یا پیل گالوانی وصل کنیم. بهتر است آهن ابتدا تابکاری شود، یعنی ، تا دمای سرخ شدن داغ شود. مثلا در کوره گرم و سپس به آرامی سرد شود. سیم پیچ باید توسط رئوستایی با مقاومت 1W تا 20W به باتری وصل شود، بطوری که جریان مصرف شده از باتری خیلی شدید نباشد. گاهی آهنرباهای الکتریکی شکل نعل اسب را دارند که برای نگه داشتن بار بسیار مناسبترند.

ساختار آهنربای الکتریکی
میدان پیچه با هسته آهنی بسیار قویتر از پیچه بدون هسته است، زیرا آهن درون پیچه شدیدا مغناطیده و میدان آن بر میدان پیچه منطبق است. ولی ، هسته‌هایی آهنی که در آهنرباهای الکتریکی برای تقویت میدان بکار می‌روند، فقط تا حدود معینی مقرون به مساحت‌اند. در واقع ، میدان آهنرباهای الکتریکی عبارت است از برهمنهی میدان حاصل از سیم ‌پیچ حامل جریان و میدان هسته مغناطیده ، برای جریانهای ضعیف ، میدان دوم به مراتب قویتر از میدان اولی است.
وقتی که میدان در سیم پیچ افزایش می‌یابد، ابتدا این دو میدان به یک میزان معینی متناسب با جریان افزایش می‌یابند، بطوری که نقش هسته تعیین کننده می‌ماند. ولی ، با افزایش بیشتر جریانی که از سیم پیچ می‌گذرد، مغناطش آهن کند می‌شود و آهن به حالت اشباع مغناطیسی نزدیک می‌شود. وقتی که عملا تمام جریانهای مولکولی موازی شدند، افزایش بیشتر جریانی که از سیم ‌پیچ می‌گذرد نمی‌تواند چیزی بر مغناطش آهن اضافه کند، در حالی که میدان سیم‌ پیچ به زیاد شدن متناسب با جریان ادامه می‌دهد.
هرگاه جریان شدید از سیم‌ پیچ (برای دقت بیشتر ، در لحظه‌ای که تعداد آمپر ـ دورها در متر به 106 نزدیک می‌شود.) بگذارند، میدان حاصل از سیم ‌پیچ بسیار قویتر از میدان هسته آهنی اشباع شده می‌شود. بطوری که هسته عملا بی‌فایده می‌شود و فقط ساختمان آهنربای الکتریکی را پیچیده می‌کند. به این دلیل ، آهنرباهای الکتریکی ، پر قدرت بدون هسته آهنی ساخته می‌شوند.

آهنربای الکتریکی پر قدرت
تهیه آهنرباهای الکتریکی پرقدرت مسأله انقلاب تکنولوژیک بسیار پیچیده‌ای است. در واقع ، برای اینکه بتوانیم جریانهای بزرگی را بکار بریم، سیم‌پیچها باید از سیم کلفتی ساخته شوند. در غیر این صورت ، سیم‌ پیچ شدیدا گرم و حتی گداخته می‌شود. گاهی بجای سیم از لوله‌های مسی استفاده می‌شود، که در آن جریان نیرومند آب برای خنک کردن سریع دیواره‌های لوله که جریان از آن می‌گذرد گردش می‌کند. ولی با سیم ‌پیچی که از سیم کلفت یا لوله ساخته شده است داشتن تعداد زیادی دور در واحد طول ناممکن است.
از طرف دیگر ، استفاده از سیم نازک تعداد دورهای زیادی را در واحد متر ممکن می‌سازد، نمی‌گذارد تا جریانهای زیاد را بکار بریم. پیشرفت زیادی را در ایجاد میدانهای مغناطیسی بدست آمده به بهره گیری از ابررسانا‌ها در سیم پیچهای مغناطیسها مربوط می‌شود، که بکار بردن جریانهای شدید را مقدور می‌سازد.

تکنیک کاپیتزا
کاپیتزا (P.L. kapitza) فیزیکدان شوروی سابق راه هوشمندانه‌ای را برای بیرون آمدن از این وضع پیشنهاد کرد. او جریانهای عظیم 104 آمپر را برای مدت بسیار کوتاهی حدود 0.01 s از سیملوله‌ای گذرانید. در این مدت ، سیم ‌پیچ سیملوله خیلی شدید گرم نشد، در حالی که میدانهای مغناطیسی کوتاه مدت شدیدی بدست آمده بودند.
البته او وسایل خاصی را ترتیب داد که برای ثبت نتایج آزمایشهایی که در آنها اثر میدان مغناطیسی پرقدرت حاصل در سیملوله برای اجسام گوناگون مورد بررسی قرار می‌گرفتند. در اغلب کاربردهای فنی ، تعداد آمپر ـ دورها در سیم ‌پیچهای آهنرباهای الکتریکی میدانهای نسبتا شدید می‌توان بدست آورد (با القای چند تسلا).

کاربرد آهنربای الکتریکی
نیروی آهنربایی :
نیرویی که در آهنربایی با آن اجسام آهنی را جذب می‌کند با افزایش فاصله بین آهنربا و آهن به تندی کاهش می‌یابد. به این دلیل ، نیروی بالابرنده آهنربای الکتریکی ، معمولا با نیرویی معین می‌شود که بر آهن واقع در مجاورت بلافصله خود وارد می‌کند. به عبارت دیگر ، نیروی بالابرنده یک آهنربا مساوی نیرویی است که برای جدا کردن آن تکه تمیزی از آهن صاف که جذب آن شده لازم است.

آهنربای دائمی
آهنربای دائم به اختصار PM1 خوانده می‌شود و قطعه‌ای از فولاد سخت و یا دیگر مواد مغناطیسی که تحت اثر میدانهای شدید ، مغناطیس شده و این اثر را برای مدت طولانی در خود حفظ می‌کنند. اثر آهنربایی اولین بار ، روی قطعه‌هایی از سنگ معدن آهن ، به نام آهنربای طبیعی یا معدنی در طبیعت مشاهده شد و دیدند که قطعات آهن را به خود جذب می‌کند.
بعدا دریافتند که چنانچه قطعه درازی از این سنگ آهن مغناطیسی معدن را ، بطور معلق در هوا نگهدارند این قطعه دراز خود را در امتدادی قرار می‌دهد که یک انتهایش به طرف قطب شمال زمین قرار دارد و این انتهای میله آهن مغناطیس دار را قطب شمال و سر دیگر آن را قطب جنوب نامیدند. چنین قطعه سنگ معدن آهن ، آهنربای میله‌ای نامیده شد.

نظریه اول آهنربایی
هر آهنربا از تعدادی ذره آهنربایی تشکیل شده است. وقتی یک قطعه آهن ، آهنربا نیست، ذرات آهنربایی بطور پراکنده و دلخواه داخل آن قرار دارند و وقتی ذرات داخل آهن در امتدادی منظم قرار گیرند، اثرات مغناطیسی آنها باهم جمع شده و آن آهن ، آهنربا می‌شود.

نظریه دوم آهنربایی
خاصیت آهنربایی به الکترونها وابسته است. الکترون دارای یک نیروی دوار در اطراف خود می‌باشد و وقتی مدارهای الکترونها در امتداد میله آهن طوری قرار گیرند که دایره‌های نیرو با یکدیگر جمع شوند، میله آهنی ، آهنربا می‌شود. در طبیعت از نقطه نظر تغییرات چگالی فلوی مغناطیسی (B) بر حسب جریان (I) می‌توان مواد را به دو دسته تقسیم نمود:
1. مواد غیر مغناطیسی: از این مواد می‌توان پلاستیک و میکا و عایقهای جریان الکتریکی را نام برد. در این مواد ، نفوذ پذیری مغناطیسی عددی ثابت است و مقدار آن را µ˚= 4π×10-7 فرض می‌کنیم.
2. مواد مغناطیسی: مواد مغناطیسی که به مواد فرومغناطیسی نیز معروفند جزء گروه آهن به شمار می‌روند. در این مواد با جریان مفروض I چگالی شار (B) افزونتری نسبت به فضای آزاد شکل می‌گیرد و منحنی B-I این مواد غیر خطی است. مواد مغناطیسی خود به دو گروه تقسیم بندی می‌شوند:
• مواد فرومغناطیسی نرم: که آنها خطی کردن تغییرات B بر حسب I (منحنی B-I) امکان پذیر است، از تقریب خوبی برخوردار می‌باشد و در این مواد ، B بخاطر I حاصل می‌شود.
• مواد فرومغناطیسی سخت: که از اینگونه مواد برای ساخت مغناطیس دائم استفاده می‌شود. در این مواد B بخاطر دو عامل جریان (I) و خاصیت مغناطیس شوندگی ماده (M) بروزمی کند. این مواد در اثر میدانهای شدید ، مغناطیس شده و این اثر را تا مدت طولانی خود حفظ می‌کنند.
مواد مغناطیسی برای مقاصد خاص نیز ساخته می‌شوند، بطوری که طی سی سال گذشته چند ماده مغناطیسی جدید ساخته شده که مشخصات لازم برای ایجاد یک آهنربای دائم خوب را دارا هستند. آهنربای دائم خوب ، از ماده‌ای است که تا حد امکان شار باقیمانده (یا چگالی شار باقیمانده) بزرگی داشته باشند. عمده این مواد فریتها (مواد مغناطیسی سرامیکی) و مواد مغناطیسی خاک کمیاب هستند.

انواع آهنربای دائم
سه نوع آهنربای دائم که دارای کاربرد فراوان هستند به شرح زیرند:

آهنربای آلنیکو
آلنیکو از ابتدای نام سه عنصر آلومینیوم ، نیکل و کبالت گرفته شده است. این آلیاژ که عمدتا از فلزات آهن و آلومینیوم و نیکل و کبالت ساخته می‌شود، قابلیت پذیرش نیروی مغناطیسی بالایی و به منظور ساختن آهنربای دائم بلندگوها و لامپهایی با حوزه مغناطیسی و در سروموتورهای DC2 پیشرفته استفاده می‌شود.

معمولا در آخر اسم "آلنیکو" حرفی اضافه می‌گردد که مشخص کننده قدرت آهنربا است. فرضا "آلنیکوv" قویترین آهنربای دائم نسبت به "آلنیکوها" است و معمولا آهنربای "آلنیکو" را به صورت طولی مغناطیس می‌کنند و سپس مورد استفاده قرار می‌دهند. منظور از مغناطیس کردن طولی این است که دو قطب S و N در طول جسم قرار می‌گیرند.

آهنربای فریت
این آهنربا را آهنربای سرامیک نیز می‌نامند. این آهنربای دائم از ترکیب مواد ذوب شده نوعی چینی و پودر ماده مغناطیسی ساخته می‌شود. این آهنربا چون پودر پس ماند مغناطیسی و نیروی خنثی کننده زیادی دارد، آن را به صورت عرضی مغناطیسی می‌کنند. منظور از مغناطیس کردن عرضی ، قرار گرفتن دو قطب S و N در عرض جسم است و چون چگالی شار (B) این آهنربای دائم کم است برای جبران چگالی شار زیاد، آن را دراز می سازند.
چون هزینه ساخت این آهنربا کم بوده و مواد اولیه آن به ارزانی قابل تهیه است، بطور گسترده مورد استفاده قرار می‌گیرد. نامگذاری آهنربای فریت با توجه به نوع عنصری که در ساخت آهنربا از آن استفاده شده است صورت می‌گیرد. مثل فریت استرونیتام و یا فریت باریم.

آهنربای سارماریوم - کبالت
عنصر اصلی این آهنربای دائم عنصر ساماریوم با علامت اختصاری Sm و عدد اتمی 62 است. چون این آهنربای کمیاب (به دلیل عنصر تشکیل دهنده کمیاب ساماریوم) دارای پس ماند مغناطیسی و خنثی کننده خیلی زیادی است، به همین دلیل می‌تواند شدتی به مراتب بزرگتر از آهنربای دائم معمولی داشته باشد. به عنوان مثال در یک طول و مساحت برابر ، چگالی شار (B) این آهنربا دو برابر آهنربای سرامیک است.
هزینه تولید این آهنربا قابل ملاحظه است و به همین دلیل آن را کم قطر می‌سازند. چون شدت مغناطیسی این آهنربا بالا است، لذا از چنین آهنربایی که در ابعاد کوچک و وزن کمتر شدت مغناطیسی خوبی دارد در ساعتهای الکترونیکی و لامپهای ماگنترون و تجهیزات نظامی و سروموتورها هواپیما استفاده می‌کنند. به این ترتیب روز به روز دامنه کاربرد این آهنربا رو به افزایش است.

آهنربای الکتریکی با نیروی بالا برندگی زیاد :
برای بدست آوردن آهنربای الکتریکی با نیروی بالا برنده تا حد امکان زیاد ، باید سطح تماس بین قطبهای آهنربا و جسم آهنی جذب شده (معروف به جوشن) را افزایش داد، و سعی کرد تا تمام خطوط میدان مغناطیسی فقط از آهن بگذرد، یعنی تمام فواصل هوا یا شکاف‌های بین جوشن و قطب‌های آهنربا حذف شوند. برای این منظور باید سطوح قوه تغذیه می‌شود می‌تواند باری به جرم 80 تا 100Kg را نگه دارد.

کاربرد آهنرباهای الکتریکی با نیروی بالا برندگی زیاد :
از آهنرباهای با نیروی بالابرهای بزرگ در مهندسی برای مقاصد گوناگونی استفاده می‌شود. مثلا ، جرثقیلهایی که با آهنربای الکتریکی کار می‌کنند، در کارخانه‌های استخراج فلز و فلزکاری برای حمل تکه‌های آهن یا ادوات که باید روی آن آشکار شود جذب آهنربای الکتریکی نیرومندی می‌شود. کافی است که جریان را وصل کنیم تا جسم در هر وضعی بر میز کار ثابت شود، یا جریان را قطع کنیم تا جسم رها شود.
برای جدا کردن مواد مغناطیسی از اجسام غیر مغناطیسی ، نظیر جداسازی سنگ‌آهن از کلوخ «جداسازی مغناطیسی) ، جدا کننده‌های مغناطیسی به کار می‌روند، که در آنها ماده‌ای که باید تصفیه شود از میدان مغناطیسی نیرومند آهنربای الکتریکی می‌گذرند. این میدان تمام ذرات مغناطیسی را از ماده جدا می‌کند.

آهنربای الکتریکی پیشرفته :
اخیرا آهنرباهای الکتریکی پرقدرت با سطوح عظیم قطبها کاربردهای مهمی در ساختمان شتابدهنده‌ها یافته‌اند، یعنی وسایلی که در آنها ذرات باردار الکتریکی الکترونها و پروتونها) تا سرعتهای بسیار بالایی که به انرژی 108 تا 109 الکترون ولت مربوطند، شتاب داده می شوند. باریکه هایی از چنین ذرات که با سرعت بسیار زیادی حرکت می‌کنند ابزار عمده ای برای بررسی ساختار اتمی‌اند. آهنرباهایی که در این وسایل به کار می‌روند حجم‌های عظیمی دارند.

آهنرباهای الکتریکی با قطب های مخروط ناقص :
وقتی که لازم باشد میدان مغناطیسی بسیار نیرومندی را فقط در ناحیه کوچکی بدست می‌آوریم، آهنرباهای الکتریکی با قطب‌هایی به شکل مخروط ناقص به کار می‌روند. آن گاه در فضای کوچک بین آنها میدانی با القای مغناطیسی با 5T را می‌توان به آسانی به دست آورد. چنین آهنرباهای الکتریکی‌ای عمدتا در آزمایشگاه‌های فیزیک برای آزمایش‌هایی با میدان مغناطیسی نیرومند به کار می روند.

کاربردهای پزشکی آهنرباهای الکتریکی :
انواع دیگر آهنربای الکتریکی نیز برای مقاصد خاصی طراحی شده اند. مثلا ، پزشک‌ها برای خارج کردن براده‌های آهن که تصادفی وارد چشم شده باشند از آهنربای الکتریکی استفاده می‌کنند. برای خارج ساختن سوزن و سایر اشیا تیز فرو رفته در پا و سایر اعضای بدن از آهنرباها استفاده می‌شود.

مغناطیس
علم مغناطیس از این مشاهده که برخی سنگها (ماگنتیت) تکه‌های آهن را جذب می کردند سرچشمه گرفت. واژه مغناطیس از ماگنزیا یا واقع در آسیای صغیر ، یعنی محلی که این سنگها در آن پیدا شد، گرفته شده است. زمین به عنوان آهنربای دائمی بزرگ است که اثر جهت دهنده آن بر روی عقربه قطبهای آهنربا ، از زمانهای قدیم شناخته شده است. در سال 1820 اورستد کشف کرد که جریان الکتریکی در سیم نیز می‌تواند اثرهای مغناطیسی تولید کند، یعنی می‌تواند سمت گیری عقربه قطب نما را تغییر دهد.
در سال 1878 رولاند (H.A.Rowland) در دانشگاه جان هاپکینز متوجه شد که یک جسم باردار در حال حرکت (که آزمایش او ، یک قرص باردار در حال دوران سریع) نیز منشاأ اثرهای مغناطیسی است. در واقع معلوم نیست که بار متحرک هم ارز جریان الکتریکی در سیم باشد. جهت مطالعه زندگینامه علمی رولاند فیزیکدان برجسته آمریکایی به کتاب زیر مراجعه شود:
Phusics by John D.Miller,Physics
Today , July 1976Rowland،s البته دو علم الکتریسیته و مغناطیس تا سال 1820 به موازات هم تکامل می یافت اما کشف بنیادی اورستد و سایر دانشمندان سبب شد که الکترومغناطیس به عنوان یک علم واحد مطرح شود. برای تشدید اثر مغناطیسی جریان الکتریکی در سیم می‌توان را به شکل پیچه‌ای با دورهای زیاد در آورد و در آن یک هسته آهنی قرار داد. این کار را می‌توان با یک آهنربای الکتریکی بزرگ ، از نوعی که معمولا در پژوهشگاههای برای کارهای پژوهشی مربوط به مغناطیس بکار می‌رود، انجام داد.

تولد میدان مغناطیسی
دومین میدانی که در مبحث الکترومغناطیس ظاهر می شود، میدان مغناطیسی است. این میدانها و به عبارت دقیقتر آثار این میدانها از زمانهای بسیار قدیم ، یعنی از همان وقتی که آثار مغناطیسهای طبیعی سنگ آهنربا (Fe3O4 یا اکسید آهن III) برای اولین بار مشاهده شد، شناخته شده‌اند. خواص شمال و جنوب یابی این ماده تاثیر مهمی بر دریانوردی و اکتشاف گذاشت با وجود این، جز در این مورد مغناطیس پدیده ای بود که کم مورد استفاده قرار می گرفت و کمتر نیز شناخته شده بود، تا اینکه در اوایل قرن نوزدهم اورستد دریافت که جریان الکتریکی میدان مغناطیسی تولید می‌کند.
این کار تواأم با کارهای بعدی گاؤس ، هنری . فاراده و دیگران نشان دادند که این شراکت واقعی بین میدانهای الکتریکی و مغناطیسی وجود دارد و این دو توأم تحت عنوان میدان الکترومغناطیسی حضور دارند. به عبارتی این میدانها به طرز جدایی ناپذیری در هم آمیخته شده‌اند.

حوزه عمل و گسترش میدان مغناطیسی
تلاش مردان عمل به توسعه ماشینهای الکتریکی ، وسایل مخابراتی و رایانه‌ها منجر شد. این وسایل که پدیده مغناطیسی در آنها دخیل است نقش بسیار مهمی در زندگی روزمره ایفا می‌کنند. با گسترش و سریع علوم از اعتبار این علوم اولیه کاسته نمی‌شود و همیشه سازگاری خود را با کشفیات جدید حفظ می‌کند.

مغناطیسهای طبیعی و مصنوعی
• بعضی از سنگهای آهن یاد شده در طبیعت خاصیت جذب اشیای آهنی کوچک ، مانند براده‌ها یا میخهای مجاور خود را دارند. اگر تکه‌ای از چنین سنگی را از ریسمانی بیاویزیم ، خودش را طوری قرار می‌دهد که راستایش از شمال به جنوب باشد، تکه‌های چنین سنگهایی به آهنربا یا مغناطیس معروف است.
• یک تکه آهن یا فولاد با قرار گرفتن رد مجاورت آهنربا ، آهنربا یا مغناطیده می‌شود، یعنی توانایی جذب اشیای آهنی را کسب می‌کند. خواص مغناطیسی این تکه آهن یا فولاد هر چه به آهنربا نزدیکتر باشد، قویتر است. وقتی که تکه‌ای از آهن و آهنربا با یکدیگر تماس پیدا کنند ، مغناطش یا آهنربا شدگی به مقدار ماکزیمم (میخ آهنی که به آهنربا نزدیک شود خاصیت آهنربایی پیدا می‌کند و براده‌های آهنربا را جذب می‌کند) می‌باشد.
• هنگامی که آهنربا دور شود، تکه آهن یا فولاد که توسط آهنربا شده‌اند بخش زیادی از خواص مغناطیسی بدست آورده را از دست می‌دهند، ولی باز هم تا حدی آهنربا می‌مانند. از اینرو به آهنربای مصنوعی تبدیل می‌شوند و همان خواص آهنربای طبیعی را دارد. این پدیده را می‌توان با آزمایش ساده‌ای به اثبات رسانید. خاصیت آهنربایی که به هنگام تماس تکه آهن با آ‌هنربا پیدا می‌شود بر خلاف مغناطش بازمانده که با دور شدن آهن ربا باقی می‌ماند، مغناطش موقت نامیده می‌شود. آزمایشهایی از این نوع نشان می‌دهد که مغناطش بازمانده خیلی ضعیفتر از مغناطش موقت است، مثلا در آهن نرم فقط کسر کوچکی از آن است.
• هم مغناطش موقت و هم مغناطش بازمانده برای درجات مختلف آهن و فولاد متفاوت است. مغناطش موقت آهن نرم و آهن تابکاری شده از آهن نرم و فولاد تابکاری نشده به مقدار زیادی قویتر است. بر عکس مانده مغناطش فولاد ، به ویژه درجاتی از آن که شامل مثلا آمیزه کبالت است، خیلی قویتر از مغناطش باز مانده در آهن نرم است. در نتیجه ، اگر دو میله یکسان ، یکی ساخته شده از آهن نرم و دیگری از فولاد را اختیار کنیم و آنها را در مجاورت آهنربای یکسانی قرار دهیم ، میله آهن نرم قویتر از فولاد آهنربا می‌شود.
ولی اگر آهنربا را دور کنیم، میله آهن نرم تقریبا بطور کلی مغناطیده می‌شود، در حالیکه میله فولاد مقدار قابل توجهی از خاصیت آهنربایی اولیه خود را حفظ می کند. در نتیجه ، آهنربای دائمی از میله فولادی از میله آهنی خیلی قویتر است. به این دلیل آهنرباهای دائمی را از درجات خاصی از فولاد درست می‌کنند نه از آهن.
• آهنرباهای مصنوعی که بطور ساده با قرار دادن تکه‌ای فولاد در نزدیکی یک آهنربا یا با تماس با آن بدست آمده نسبتا ضعیف هستند. آهنرباهای قویتر را با مالیدن تیغه فولادی با آهنربا در یک جهت بدست می‌آورند. البته در این حالت نیز آهنرباهایی که بدست می‌آید که از آهنربایی که مغناطش به توسط آن انجام شده است، ضعیفتر است. هر نوع ضربه یا تکانی در طول مغناطش عمل را آسانتر می‌کند. برعکس تماس دادن آهنربای دائمی با تغییر ناگهانی و زیاد دمای آن ممکن است باعث وامغناطش آن شود.
• وامغناطش بازمانده نه تنها به ماده بلکه به شکل جسمی که آهنربا می‌شود نیز بستگی دارد. میله‌های نسبتا کوتاه و کلفت از آهن نرم بعد از دور شدن آهنربا تقریبا به کلی خاصیت آهنربایی را از دست می‌دهند. با وجود این ، اگر همین آهن را برای ساختن سیمی به طول 300 تا 500 برابر قطر آن بکار بریم، این سیم (ناپیچیده) خاصیت مغناطیسی خود را به مقدار زیادی حفظ خواهد کرد.

انرژی مغناطیسی
هرگاه یک منبع ولتاژی را که قادر به ایجاد ولتاژی به اندازه V است، به مداری متصل کنیم، در این مدار جریان الکتریکی برقرار می‌‌شود، اما هر ماده دارای یک مقاومت الکتریکی می‌‌باشد، بنابراین مجموع ولتاژ چشمه و نیروی محرکه القایی در مدار با حاصلضرب مقاومت مدار در جریانی که از آن می‌‌گذرد، برابر خواهد بود و چون جریان را به صورت مشتق زمانی بار الکتریکی تعریف می‌‌کنند، بنابراین می‌‌توان گفت که چشمه ولتاژ یا باتری مقداری کار انجام می‌‌دهد تا مقداری بار الکتریکی را در مدار انتقال دهد.
مقداری از این کار انجام شده توسط منبع ولتاژ یا انرژی تزریق شده به مدار و مقداری هم به صورت گرما تلف می‌‌شود. این انرژی برگشت ناپذیر است. مقدار دیگری از انرژی نیز صرف تغییر شار در مدار می‌‌شود، یعنی این جمله دوم کاری است که علیه نیروی محرکه القا شده در مدار انجام می‌‌شود. بنابراین اگر در یک مدار صلب و ساکن که بجز اتلاف گرمای ژول هیچ انرژی دیگری از دست نمی‌‌دهد، کار انجام شده توسط باتری با تغییر انرژی مغناطیسی مدار برابر خواهد بود.

انرژی مغناطیسی مدارهای جفت شده

در بحث الکتریسیته به مجموع چند مقاومت و خازن یا قطعات دیگر الکترونیکی که به یک منبع ولتاژ وصل شده باشد، مدار الکتریکی می‌‌گویند. در بحث مغناطیس به مجموعه سیم پیچی که بر اطراف حلقه‌ای از یک ماده مغناطیسی پیچیده شده باشد، مدار مغناطیسی می‌‌گویند.
حال فرض کنید که دستگاهی متشکل از تعدادی مدار که با یکدیگر برهمکنش دارند، داشته باشیم. برای اینکه بتوانیم انرژی مغناطیسی این دستگاه را بیان کنیم، فرض می‌کنیم در حالت اول کلیه این مدارها بدون جریان هستند و ما تمام جریانها را بطور هماهنگ به مقدار نهایی‌شان می‌‌رسانیم، یعنی در هر لحظه از زمان تمام جریانها کسر یکسانی از مقدار نهایی خود را دارند. البته این امر تنها زمانی درست است که مدارها صلب بوده و محیطهای موجود خطی باشند، تا انرژی نهایی به ترتیب تغییر جریانها بستگی نداشته باشد.
بنابراین اگر جریان هر مدار را با I_i و شار مغناطیسی القا شده در آن را با Ф_i نشان دهیم، به رابطه زیر خواهیم رسید:

که n تعداد مدارها می‌‌باشد. البته این رابطه را می‌‌توان برحسب القا متقابل مدارها نوشت.

چگالی انرژی در میدان مغناطیسی
رابطه‌ای که در قسمت قبلی برای انرژی مغناطیسی مدار محاسبه شد، رابطه مفید است، چون پارامترهای موجود در آن را می‌توان با اندازه گیری مستقیم بدست آورد. از طرف دیگر ، می‌‌توان انرژی را برحسب میدانهای برداری مغناطیسی و بردار شدت میدان مغناطیسی بیان کرد. در این صورت چون رابطه گویاتر است و تصویری را عرضه می‌‌کند که در آن انرژی در خود میدان مغناطیسی ذخیره شده است، لذا این بیان مفیدتر است.
این رابطه نسبت به رابطه قبلی کلی‌تر می‌باشد و اگر محیط مورد نظر ما یک محیط خطی باشد، یعنی بتوانیم با داشتن یکی از مقادیر شدت میدان مغناطیسی (H) یا القا مغناطیسی (B) یکی را برحسب دیگری محاسبه کنیم، به راحتی می‌‌توانیم مقدار انرژی ذخیره شده در آن مدار را با استفاده از حل یک انتگرال ساده از رابطه زیر محاسبه کنیم:

که در آن ضرب موجود از نوع ضرب عددی یا اسکالر است و انتگرال روی حجم مدار انجام می‌‌گیرد.

چگالی انرژی مغناطیسی
تابع انتگرال (یا سیگما) که در رابطه مربوط به انرژی مغناطیسی ظاهر می‌‌گردد، یک انتگرال حجمی ‌است که روی تمام نقاط فضا گرفته می‌‌شود و لذا بدیهی است که می‌‌توانیم انرژی واحد حجم را به عنوان چگالی انرژی مغناطیسی تعریف کنیم، یعنی اگر چگالی انرژی را با μ نشان دهیم،
در این صورت  خواهد بود.
در مورد خاص اجسام مغناطیسی همسانگر و خطی که بین H و B یک رابطه خطی وجود دارد، یعنی
است که در آن μ تراوایی مغناطیسی ماده می‌‌باشد، لذا رابطه چگالی انرژی به فرم ساده زیر در می‌‌آید:

اثر مغناطیسی جریان الکتریکی
اثرهای ساده الکتریکی و مغناطیسی را از زمانهای قدیم می‌شناختند. حدود 600 سال قبل از میلاد یونانیان می‌دانستند که آهنربا آهن را جذب می‌کند و کهربای مالیده به لباس چیزهای سبک مانند کاه را بسوی خود می‌کشد. با وجود این اختلاف بین جذبهای الکتریکی و مغناطیسی تعیین نشده بود و این پدیده‌ها را از یک نوع در نظر می‌گرفتند.
خط فاصل روشن بین این دو پدیده را گیلبرت (W. Gilbert) ، فیزیکدان و طبیعت شناس انگلیسی پیدا کرد. و نیز او کتابی درباره آهنربا ، "اجسام آهنربایی" و "زمین به عنوان آهنربای بزرگ" در سال 1600 منتشر کرد. کار وی شروع بررسی در پدیده‌های الکتریکی را نشان می‌دهد. گیلبرت در این کتاب همه خواص آهنرباهای شناخته شده تا آن زمان را تشریح کرده و نتایج آزمایشهای خیلی مهم ، شخص خود را نیز آورده است. همچنین وی شماری از تفاوتهای اساسی بین جذبهای الکتریکی و مغناطیسی را مشخص نموده و اصطلاح “الکتریسیته“ را وضع کرده است.

سیر تحولی و رشد

• بعد از انتشار کارهای گیلبرت ، تمایز بین پدیده‌های الکتریکی و مغناطیسی مسلم شد، اما به رغم اینکه اختلافها شماری از واقعیتها ارتباط ناگسستنی بین این پدیده‌ها را پدیدار ساخت. برجسته‌ترین این واقعیتها مغناطیس اشیای آهنی و وارونی عقربه قطب نما بر اثر آذرخش بودند.
• آراگو (D. F. Arago) ، فیزیکدان فرانسوی در کتاب خود به نام "تندر و آذرخش" ، شرح می‌دهد که چگونه در ژوئیه سال 1681، در کشتی راین (reine) واقع در دریای آزاد حدود صدها مایل از ساحل بر اثر آذرخش دکلها ، بادبانها و غیره بطور جدی صدمه دیدند. وقتی که شب فرا رسید، از روی وضع ستارگان دریافت که از سه قطب نمای در دسترس دو تا بجای شمال به سمت جنوب ایستاده بودند، در حالی که یکی از آنها به سمت شمال بود، آراگو همچنین شرح می‌دهد که هرگاه آذرخش به خانه بخورد، کارد ، چنگال و سایر اشیای آهنی را به شدت آهنربا می‌کند.
• در آغاز قرن هجدهم ثابت شد که آذرخش در واقع جریان الکتریکی شدیدی است که از هوا می‌گذرد. بنابراین به این نتیجه می‌رسیم که جریان الکتریکی خواص مغناطیسی دارد، اما این خواص جریان فقط در سال 1820 توسط اورستد (H. Oersted) فیزیکدان دانمارکی با آزمایش مشاهده و بررسی شد. همانطوری که نیروهای مؤثر بر بارهای الکتریکی نیروهای الکتریکی نام دارد، نیروهای مؤثر بر آهنرباهای طبیعی یا مصنوعی را نیروهای مغناطیسی می‌گویند.

منشأ میدان مغناطیسی
اگر در فضا نیروهای الکتریکی حاکم باشد و بر ذرات باردار نیروی الکتریکی وارد کند، می‌گوییم در این فضا میدان الکتریکی وجود دارد. از این رو آزمایش نشان می‌دهد که در فضای اطراف جریان الکتریکی ، نیروهای مغناطیسی ظاهر می‌شود، یعنی میدان مغناطیسی بوجود می‌آید.

اولین سوال اورستد

آیا ماده سیم روی میدان مغناطیسی بوجود آمده از جریان اثر دارد یا نه؟ اورستد دریافت که سیمهای اتصال را می‌توان از چند سیم یا نوار باریک مختلف درست کرد و جنس فلز در نتیجه اثر نمی‌گذارد (احتمالا اگر بزرگ باشد اثر می‌گذارد). چون فلزات مختلف ، مقاومتهای الکتریکی متفاوتی دارند، اگر به باتری وصل شود، می توانند جریانهای متفاوت داشته باشند و در نتیجه اثر مغناطیسی این جریانها متفاوت خواهد بود.
اما باید بخاطر داشت که آزمایش اورستد پیش از وضع قانون اهم و دستیابی به مفهوم بستگی مقاومت رساناها به جنس ماده تشکیل دهنده آنها انجام گرفته است. اگر آزمایش اورستد با سیمهای پلاتین ، طلا ، نقره ، برنج ، و آهن یا نوارهای روی و قلع یا جیوه انجام گیرد، همین نتیجه اخیر بدست می‌آید. اورستد آزمایشاتش را با فلز ، یعنی رساناهایی با رسانش الکترونی ، انجام داد.

اثر مغناطیسی جریان الکترولیتی
اگر در آزمایش اورستد فلز رسانا را با لوله دارای الکترولیت یا لوله‌ای که داخل آن تخلیه الکتریکی صورت می‌گیرد، استفاده شود. هر چند در این حالتها جریان الکتریکی از حرکت یونهای مثبت و منفی ناشی می‌شوند، ولی اثر آنها روی عقربه مغناطیسی با اثر رسانای فلزی یکسان است. بدون توجه به رسانای حامل جریان ، در فضای اطراف آن میدان مغناطیسی بوجود می‌آید. از اینرو می‌توان گفت که در اطراف هر جریانی میدان مغناطیسی ظاهر می‌شود. این خاصیت اصلی جریان الکتریکی در اثرهای حرارتی و شیمیایی جریان الکتریکی نقش بازی می‌کند.

اثر مغناطیسی جریان و خواص الکتریکی رسانا
ایجاد میدان مغناطیسی معمولترین خاصیت از سه خاصیت جریان الکتریکی است. جریان الکتریکی فقط در یک نوع رسانا (الکترولیتها) اثر شیمیایی بوجود می‌آورد، نه در دیگران (فلزات). مقدار جریان آزاد شده توسط جریان ، بسته به مقاومت رسانا ، می‌تواند بیشتر یا کمتر باشد. در ابر رساناها ممکن است همراه جریان ، گرما آزاد می شود. از طرفی دیگر میدان مغناطیسی با جریان الکتریکی پیوندی جدایی ناپذیر دارد. این میدان به خواص مشخصی از رسانا بستگی ندارد و فقط شدت و جهت جریان آن را تعیین می‌کند. بیشترین کاربردهای صنعتی الکتریسیته نیز بوجود میدان مغناطیسی جریان وابسته می‌باشند.

الکترومغناطیس (Electromagnetism)
مبدا علم الکتریسیته به مشاهده معروف تالس ملطی (Thales of Miletus) در 600 سال قبل از میلاد بر می‌گردد. در آن زمان تالس متوجه شد که یک تکه کهربای مالش داده شده خرده‌های کاغذ را می‌رباید. از طرف دیگر مبدأ علم مغناطیس به مشاهده این واقعیت برمی‌گردد که بعضی از سنگها (یعنی سنگهای ماگنتیت) بطور طبیعی آهن را جذب می‌کند. این دو علم تا سال 1199 - 1820 به موازات هم تکامل می‌یافتند.
در سال 1199-1820 هانس کریستان اورستد (1777 - 1851) مشاهده کرد که جریان الکتریکی در یک سیستم می‌تواند عقربه قطب نمای مغناطیسی را تحت تأثیر قرار دهد. بدین ترتیب الکترومغناطیس به عنوان یک علم مطرح شد. این علم جدید توسط بسیاری از پژوهشگران که مهمترین آنان مایکل فاراده بود تکامل بیشتری یافت.
جیمز کلرک ماکسول قوانین الکترومغناطیس را به شکلی که امروزه می‌شناسیم ، در آورد. این قوانین که معادلات ماکسول نامیده می‌شوند، همان نقشی را در الکترومغناطیس دارند که قوانین حرکت و گرانش در مکانیک دارا هستند.

اثرات میدان مغناطیسی
فضای اطراف آهنربا یا رسانای کامل جریان در حالت ویژه‌ای است که به اصطلاح "میدان مغناطیسی" نسبت می‌دهیم. این حالت مبین این نظر است که نیروهای مکانیکی وارد بر سایر آهنرباها یا رساناهای حامل جریان در این فضا ظاهر می‌شوند. البته این کنشها تنها اثر وجودی میدان مغناطیسی نیستند. تعداد پدیده‌های فیزیکی دیگری را نیز می‌توان مشخص کرد که در آنها اثر میدان مغناطیسی کاملا مشهود است. مثلا ، میدان مغناطیسی مقاومت فلزات مختلف را تغییر می‌دهد، اندازه بعضی از اجسام در میدان مغناطیسی تغییر می‌کند و نظایر آن.

اثر بارز میدان مغناطیسی

میدان مغناطیسی قویترین اثر را در مقاومت ویژه الکتریکی بیسموت می‌گذارد که به ساخت "میدان سنج" بیسموت منجر شده است. اجسامی که از موادی با قابلیت آهنربا شدن شدید ساخته شده‌اند (آهن ، نیکل و کبالت) بر اثر میدان مغناطیسی ابعادشان تغییر می‌کند. این پدیده که به مغناطو تنگش معروف است، کاربردهای مهمی دارد. برای برانگیختن ارتعاشات بسیار سریع میله‌های کوچک آهنی بکار می‌رود که موجهای صوتی خیلی کوتاه (موجهای فراصوت) ایجاد می‌کنند.

میدانهای مغناطیسی غیر یکنواخت
وقتی که اثر میدان مغناطیسی در نقاط مختلف ، متفاوت باشد میدان را غیر یکنواخت می‌نامند. هر گونه اثر میدان مغناطیسی را می‌توان برای اندازه گیری کمی آن بکار برد. در عمل معلوم می‌شود که مناسبتر است میدانها را با نیروهای مکانیکی وارد از آن بر آهنرباها در رساناهای حامل جریان مشخص کنیم. چون میدان مغناطیسی بر عقربه مغناطیسی یا حلقه جریان اثر سمت دهی دارد و می‌کوشد که عقربه یا عمود بر سطح حلقه ، جهت خاصی بدهد. این جهت به عنوان جهت میدان مغناطیسی انتخاب می‌شود. در مورد میدان مغناطیسی زمین این جهت از شمال به جنوب است.

القای مغناطیسی
با تشابه میدان الکتریکی که با کمیت برداری E به نام شدت میدان الکتریکی مشخص می‌شود، میدان مغناطیسی با کمیت برداری B مشخص می‌گردد که به دلایل تاریخی القای مغناطیسی نام گرفته است. البته درست‌تر این بود که در مقایسه با E این کمیت ، شدت میدان مغناطیسی نامیده می‌شد. اگر القای مغناطیسی ، میدانی در همه نقاط بزرگی و جهت یکسان داشته باشد ، میدان مغناطیسی یکنواخت نامیده می شود.

گشتاور مغناطیسی

اگر رساناهای حامل جریان بسته حلقه‌های تخت به اضلاع و اشکال گوناگون در میدان مغناطیسی یکنواخت قرار گیرند و گشتاور نیروی ماکزیمم Mmax وارد بر آنها را اندازه گیری کنیم، معلوم می‌شود که این گشتاور نیرو متناسب است با:
• جریان I داخل حلقه
• با سطوح محصور شده توسط حلقه S
• برای حلقه‌هایی با سطح S ، گشتاور ماکزیمم Mmax به شکل حلقه بستگی ندارد. یعنی برای حلقه‌های دایره‌ای ، مستطیلی ، مثلثی و حلقه‌هایی با شکل نا منظم یکسان است. بنایراین معلوم می‌شود ماکزیمم گشتاور نیرو با کمیت زیر متناسب است. Pm = IS که این کمیت به گشتاور مغناطیسی حلقه ، معروف است. وابستگی ذکر شده امکان می‌دهد تا بزرگی بردار میدان مغناطیسی B را با گشتاور نیروی ماکزیمم Mmax وارد بر حلقه‌ای با گشتاور مغناطیسی Pm مساوی واحد مشخص کنیم. در نتیجه می‌توان نوشت:
B = Mmax/pm که در آن Mmax گشتاور ماکزیممی است که در میدان معینی در حلقه جریان با گشتاور مغناطیسی pm وارد می‌شود. اگر میدان غیر یکنواخت باشد، مقدار عددی B در یک نقطه معین را با قرار دادن حلقه‌ای که اندازه‌اش در مقایسه با فواصل مخصوص تغییر میدان کوچک باشد و تعیین گشتاور Mmax وارد بر این حلقه منطبق است.
از دو جهت ممکن برای عمود ، جهتی که با جهت جریان در حلقه مطابق قاعده پیچ راستگرد (قاعده دست راست) منطبق است، اختیار می‌شود. چرخش پیچ راستگرد در جهت جریان در حلقه باعث جابجایی پیچ در جهت عمود می‌شود. عمودی که به این ترتیب انتخاب می‌شود به عنوان جهت مثبت اختیار می‌شود. جهت بردار گشتاور مغناطیسی pm منطبق بر جهت مثبت عمود فرض می‌شود. بنابراین جهت القای مغناطیسی B را می‌توانیم جهتی در نظر بگیریم که بر اثر این میدان عمود مثبت بر حلقه جریان قرار گیرد، یعنی جهتی که بردار Pm در ان جهت قرار گرفته است.

یکای القا مغناطیسی
یکای القای مغناطیسی به احترام تسلا (N. Tesla) دانشمند صربی تسلا (T) است. تسلا القای مغناطیسی میدان یکنواختی است که در آن بر حلقه جریان تختی که گشتاور مغناطیسی 1Am2 دارد گشتاور نیروی ماکزیممی برابر N ، M1 وارد می‌شود.

تعیین قطبهای آهنربا
یونانیان باستان بیش از 2500 سال پیش با پدیده آهنربایی آشنا بودند. تالس که اغلب از او به عنوان پدر علم یونان یاد می‌شود. ماده کانی مگنتیت Fe3O4 آهن را می‌رباید شناخت. همانگونه که می‌دانید ماده‌های دارای این ویژگی را آهنربا می‌نامند. چینیان باستان نیز با ویژگیهای مغناطیسی برخی از سنگهای آهنربا آشنایی داشتند و تکه‌هایی از سنگها را بصورت قطب نمای ساده در دریانوردی بکار می‌بردند.
در آهنربا (به هر شکلی که باشد) دو ناحیه وجود دارد که خاصیت آهنربایی در آن بیش از قسمتهای دیگر است. این ناحیه‌ها را قطبهای آهنربا می‌نامند. می‌دانید که عقربه مغناطیسی همواره در جهت معینی می‌ایستد، به گونه‌ای که یک قطب معین آن تقریبا به طرف شمال و قطب دیگر آن به طرف جنوب قرار می‌گیرد. قطبی را که بسوی شمال تمایل دارد قطب N و قطب جنوب گرا را قطب S می‌نامند.

مغناطیس یا آهنربا

اکسید آهن طبیعی ، کبالت ، نیکل این خاصیت را دارند که براده‌های آهن را به خود جذب می‌کنند، این خاصیت را خاصیت آهنربایی می‌نامند. برای اولین بار سنگ آهن طبیعی از محلی به نام ماگنزیا کشف شده است، به همین دلیل آهنربا را مغناطیس می‌نامند.

قطبهای آهنربا
در هر آهنربا مکانهایی وجود دارد که در آنها اثر نیروی جاذبه مغناطیس بیش از جاهای دیگر است، این مکانها را قطبهای آهنربا می‌گویند. هر گاه یک آهنربای تیغه‌ای را بوسیله نخی آویخته بطور آزاد رها کنیم، در سطح افقی چند نوسان انجام داده در راستای تقریبی شمال و جنوب زمین قرار می‌گیرد. در این وضعیت قطبی از آهنربا که بسوی شمال متوجه است قطب شمال یاب و قطب N ، قطبی که بسوی جنوب متوجه است قطب جنوب یاب یا قطب S نامیده می‌شود. قطبهای همنام به یکدیگر نزدیک شوند، بخوبی می‌توانید نیروی رانش بین قطبهای همنام را احساس کنید.

محور مغناطیسی و نصف النهار مغناطیسی
محور مغناطیسی خطی است که قطبین آهنربای آویخته شده را به یکدیگر متصل می‌کند. نصف النهار مغناطیسی صفحه فرضی قائمی است که از محور مغناطیسی آهنربای آویخته شده که در اثر آهنربایی زمین در راستای تقریبی شمال و جنوب زمین ایستاده است و از مرکز زمین می‌گذرد.

تشخیص قطبهای یک آهنربا
برای آنکه قطبهای یک آهنربا مشخص شود یکی از قطبهای آن را به قطب N آهنربای شناخته شده که آویزان است نزدیک می‌کنیم اگر همدیگر را دفع کردند این دو قطب همنام خواهند بود.

کاربرد تعیین قطبهای آهنربا
القای خاصیت مغناطیسی
وقتی که آهنربا در نزدیکی میخ قرار می‌گیرد. در میخ خاصیت مغناطیسی القاء می‌شود. اگر قطب N آهنربا را نزدیک به سر میخ بیاوریم، خاصیت آهنربا طوری القاء می‌شود که آن سر ، قطب S و سر دورتر قطب N شود. ربایش بین دو قطب غیر همنام (N در آهنربا و S در میخ) سبب ربوده شدن میخ به سمت آهنربا می‌شود. این پدیده را القای خاصیت مغناطیسی می‌نامند. با دور کردن آهنربای اصلی ، خاصیت آهنربایی القاء شده نیز از بین می‌رود. علاوه بر خاصیت آهنربایی که در اثر القاء در یک قطعه آهن ، نیکل یا کبالت ایجاد می‌شود. همواره بصورتی است که قطعه یاد شده جذب آهنربای اصلی می‌شود.

میدان مغناطیسی

در فضای اطراف یک آهنربا نیز خاصیتی وجود دارد که در اثر آن در قطعه‌های آهنی خاصیت آهنربایی القاء شود و بر قطبهای آهنرباهای دیگر نیرویی وارد می‌شود. برای مثال هر گاه یکی از قطبهای آهنربای میله‌ای را به یک عقربه مغناطیسی که در راستای تقریبی شمال و جنوب جغرافیایی بر روی پایه‌ای قرار دارد، نزدیک کنیم می‌بینیم که عقربه مغناطیسی می‌چرخد. در این وضع اگر آهنربا را دور کنیم عقربه دوباره در راستای تقریبی شمال وجنوب محل قرار می‌گیرد. این آزمایش وجود خاصیتی را در محیط اطراف یک آهنربا نشان می‌دهد، خاصیتی را که در اطراف آهنربا ایجاد می‌شود و به موجب آن به عقربه مغناطیسی نیرو وارد می‌شود، میدان مغناطیسی می‌نامند.

جهت میدان مغناطیسی
هنگامی که یک عقربه مغناطیسی را در میدان مغناطیسی یک آهنربا قرار می‌دهیم، عقربه می‌چرخد و در جهت معینی می‌ایستد. اگر آهنربا را در امتداد جدید قرار دهیم. عقربه مغناطیسی نیز خواهد چرخید و در جهت دیگری قرار خواهد گرفت. میدان مغناطیسی در هر نقطه بنا به تعریف هم راستای عقربه مغناطیسی است که در آن نقطه به حال تعادل در آمده باشد و سوی آن از S به N آن است. به این ترتیب می‌توانیم بگوییم: هنگامی که آهنربا در نزدیکی عقربه مغناطیسی قرار می‌گیرد، عقربه می‌چرخد تا در امتداد میدان مغناطیسی آهنربا قرار گیرد و قطب N آن سوی میدان مغناطیسی را نشان می‌دهد.

فرآوری و پرعیار کردن مس

 

1.      مهم‌ترین کانسنگ‌های اقتصادی مس، کانسنگ‌های سولفیدی، اکسیدی و کانسنگ‌های مخلوط اکسیدی و سولفیدی هستند. کانسنگ‌های سولفیدی معمولا به روش فلوتاسیون- پیرومتالورژی و کانسنگ‌های اکسیدی به روش هیدرومتالورژی تغلیظ می‌شوند.

2.      در کانسنگ‌های مخلوط اکسیدی- سولفیدی، ابتدا خوراک، به روش فلوتاسیون به ۲بخش کنسانتره سولفیدی و کنسانتره اکسیدی- باطله تقسیم می‌شود. با توجه به اینکه سولفیدهای مس در اسید نامحلول هستند در حال حاضر در مقیاس صنعتی از روش هیدرومتالورژی برای این کانی‌ها استفاده نمی‌شود. با افزایش مشکلات زیست‌محیطی روش پیرومتالورژی، در حال حاضر روش هیدرومتالورژی و لیچ زیرفشار به عنوان روش جایگزین برای روش پیرومتالورژی مطرح شده است. آنچه در این گزارش می‌خوانیدگفتگوی صمت است با مصطفی مولایی، کارشناس ارشد پروژه‌های صنعتی که درباره یک روش کاربردی فرآوری مس سخن گفته است. 

3.      توضیحاتی درباره فلوتاسیون کانی‌های سولفیدی مس بیان کنید؟
«
فلوتاسیون» مهم‌ترین روش تغلیظ است که به منظور فرآوری فلزات پایه به کار گرفته می‌شود. در اصل فلوتاسیون در تغلیظ کانه‌های سولفیدی مس، سرب و روی به کار می‌رود.
علاوه بر این امروزه فلوتاسیون را در فرآوری کانه‌های غیرفلزی مانند زغال‌سنگ دانه‌ریز، فلوریت، فسفات، پتاس و اکسیدهایی مانند کاسیتریت و هماتیت استفاده می‌کنند. در فلوتاسیون، جدایش کانی‌ها بر پایه تفاوت در ویژگی‌های فیزیکی و شیمیایی سطوح آنها است. به این ترتیب که پس از آماده‌سازی پالپ با معرف‌های شیمیایی مصرفی، پاره‌ای از آنها آبگریز و گروه دیگری آب‌پذیر می‌شوند.
در فرآیندهای جدایش انتخابی، حباب‌های هوا به ذرات آبگریز چسبیده و باعث انتقال آنها به سطح و تشکیل یک لایه کف پایدار می‌شود. این لایه کف از سوی پاروهایی که در سطح سلول فلوتاسیون قرار دارند، قابل جمع‌آوری است.
درحال‌حاضر پرعیارسازی به روش فلوتاسیون یکی از مهم‌ترین و کاربردی‌ترین روش‌های کانه‌آرایی محسوب می‌شود. اصطلاح رایج «فلوتاسیون» درواقع بیان‌کننده شناورسازی کف است. برای استفاده از این روش، لازم است کانی‌های با ارزش به درجه آزادی کافی رسیده باشند. این کار از سوی خردایش مناسب میسر می‌شود.
روش فلوتاسیون بر اساس خواص شیمی فیزیکی سطوح کانی‌ها در محیط پالپ استوار شده است. کلکتورها، کف‌سازها، تنظیم‌کننده‌ها، فعال‌کننده‌ها و بازداشت‌کننده‌ها از جمله مواد شیمیایی هستند که در عملیات فلوتاسیون مورد استفاده قرار می‌گیرند.
درحال‌حاضر روش فلوتاسیون کاربرد وسیعی در سطح جهان دارد و یکی از مهم‌ترین تکنیک‌های کانه‌آرایی انتخابی مواد معدنی است. در این بین، فلوتاسیون ستونی یکی از جدیدترین روش‌های فلوتاسیون است که در چند دهه اخیر پیشرفت زیادی داشته و نسبت به روش معمول مکانیکی، دارای بازدهی و کارآیی بیشتری است. 

4.      پرعیارسازی به روش فلوتاسیون چگونه انجام می‌شود؟
از سلول‌های فلوتاسیون ستونی در معادن مختلف دنیا استفاده می‌شود و در کشور ایران نیز در معادنی مانند زغال‌سنگ طبس، مجتمع معدنی مس میدوک، زغال‌سنگ کرمان و مجتمع مس سرچشمه و مس سونگون در مقیاس آزمایشگاهی و صنعتی مورد استفاده قرار گرفته و رو به گسترش است.
در ۲۰ سال گذشته که سلول ستونی به‌طور گسترده در صنعت به کار گرفته شده، افزایش عیار بین یک تا ۳ درصد و افزایش بازیابی یک تا ۳درصد نسبت به سلول‌های معمولی گزارش شده که به‌دلیل ارتفاع کف چند برابر نسبت به سلول‌های معمولی و وجود آب شست‌وشوی کف در سلول‌های ستونی، افزایش عیار تقریبا همواره مشاهده شده است.
استفاده از سلول‌های مکانیکی در صنعت فرآوری مواد معدنی عموما با مشکلاتی زیادی مواجه است. به همین علت فناوری‌های جدیدی در زمینه ماشین‌های فلوتاسیون جنبه صنعتی پیدا کرده‌اند که یکی از این فناوری‌ها ستون فلوتاسیون است. 

5.      فرآوری کانسنگ‌های اکسیدی مس چگونه انجام می‌شود؟
استخراج مس به روش هیدرومتالوژی از محلول‌های آبی با استفاده از سمنتاسیون مس روی آهن از اواسط قرن ۱۸میلادی در اسپانیا آغاز شد. همچنین در قرن ۱۹میلادی لیچینگ اکسیدهای مس با استفاده از نفوذ به طرف پایین آب‌های اسیدی که به روش‌های مصنوعی ساخته می‌شدند، انجام شده و مس از سوی سمنتاسیون از محلول بازیابی می‌شد.
این روش برای مس‌های اکسیدی با عیار پایین که از سوی ذوب مستقیم صرفه اقتصادی نداشت روش مناسبی تلقی می‌شد. به هرحال این روش به ارزان بودن و در دسترس بودن منابع اسید و آهن قراضه بستگی داشت. اسید سولفوریک باتوجه به اینکه از کانی‌های سولفیدی یا گوگرد به آسانی تولید می‌شود تقریبا همیشه مورد توجه بوده است. ظهور روش الکتروونینگ برای بازیابی مس از محلول‌های سولفاته در مقایسه با سمنتاسیون که نیاز به حذف آهن قراضه داشت منجر به اقتصادی شدن فرآیند فرآوری شده است که در آن، بازیابی قسمتی از اسید سولفوریک مصرفی برای لیچینگ و ارزش بالاتر محصول کاتدی نهایی در مقایسه با پودرهای مس مورد توجه بود.
صرف نظر از این مزایا، الکتروونینگ فقط در موارد محدودی جایگزین سمنتاسیون شد که آن هم به دلیل محدودیت‌هایی مانند وابستگی شدید الکتروونینگ به کیفیت بالای محلول حاصل از عملیات لیچینگ داشت. توسعه و پیشرفت در حلال‌های استخراج‌کننده مس، برای مثال در اواسط دهه ۱۹۶۰میلادی پیشرفت‌های اقتصادی این اجازه را داد که روش الکتروونینگ برای محلول‌های ناخالص به‌دست آمده از عملیات‌های لیچینگ اسید سولفوریکی که دارای عیار پایین مس بود به کار برده شود.
هر ۳ عملیات اصلی، لیچینگ، استخراج حلالی و الکتروونینگ نیاز دارد که با دقت کامل شود تا فرآیند به بهره‌وری کلی و نهایی برسد. این موضوع به ارزیابی کنش‌ها با جزئیات نیازدارد که بررسی شود و در مواردی که ناسازگاری وجود دارد بهترین همبستگی تعیین شود. 

6.      روش‌های متداول لیچینگ مس شامل چه مواردی هستند؟
روش‌های انحلال که برای استخراج مس به روش هیدرومتالورژی انجام می‌شود، عبارتند از: لیچینگ درجا، لیچینگ توده‌ای، لیچینگ حوضچه‌ای و لیچینگ متلاطم که به‌طور کلی روش مورد استفاده برای لیچینگ یک کانه بستگی به عیار کانه، سهولت انحلال کانه در یک حلال خاص، شرایط معدن از نظر ژئولوژی و مسائل اقتصادی دارد.
در این روش به علت کم عیار بودن کانه و توجیه نداشتن اقتصادی برای استحصال آن کانه در محل و در طول زمان طولانی لیچ می‌شود. بنابراین درشرایطی که بافت سنگ معدنی به صورت برجا یا پیش از انفجار زیرزمینی دارای تخلخل کافی باشد، می‌توان آن‌را به همان صورت درجا مورد بهره‌برداری قرار داد. از این روش در لیچینگ کانی‌های فلزی مس، اورانیوم و نمک‌های قابل انحلال درآب استفاده می‌شود.
این فرآیند ابتدا برای بازیابی باطله‌های دپوشده از سنگ حاوی مقادیر کم مس که با هیچ یک از روش‌های متداول کانه آرایی قابل تغلیظ نبود، به کار گرفته شد. نتیجه مطلوب و اقتصادی این فرآیند باعث شد برای بسیاری دیگر از ذخایر این روش اعمال شود حتی کانه‌های اکسیدی مس با عیار بالا بدین روش لیچ می‌شود مشروط بر آنکه مصرف اسید از سوی باطله زیاد نشود.
ساخت توده روش کار عبارت است از کپه کردن سنگ‌ها و ریختن حلال روی آن. حلال ضمن عبور از لابه‌لای سنگ‌ها، ماده معدنی موجود در آن را حل کرده وسپس در کف جاری شده از طریق کانال‌هایی بازیابی می‌شود. فروشویی توده‌ای به‌طور کلی به ۲ صورت: «دامپ» و «هیپ» انجام می‌شود.
در این حالت سنگ معدن خرد نشده در مکانی انباشته می‌شود حتی آماده‌سازی کف در این روش لازم نیست ولی باید سطحی که ماده معدنی روی آن ریخته شده از نظر نفوذپذیری و پایداری مشکلی نداشته باشد. 

7.      این روش با وجود هزینه‌های سرمایه‌ای کمتر نسبت به لیچینگ به روش هیپ، از بازیابی مس کمتری برخوردار است (حدود ۵۰ الی ۶۰درصد). علت کم بودن میزان بازیابی مشکلاتی از قبیل به وجود آمدن کانال‌های جریان و توزیع غیریکنواخت حلال در توده سنگ است.
روش «دامپ لیچینگ» بیشتر همراه روش «هیپ» مورد استفاده قرار می‌گیرد و کمتر به تنهایی استفاده می‌شود. بسته به نوع کانسنگ عامل انحلال ممکن است آب، محلول اسیدی یا محلول اسیدی حاوی سولفات فریک حاصل از دیگر عملیات فروشویی در همان معدن باشد.
در این روش سنگ معدنی استخراج و خرد شده و پس از نرمه‌گیری یا آلگومراسیون با دقت زیادی روی یک بستر ضداسید و نفوذناپذیر انباشت می‌شود تا از ایجاد کانال جریان در بعضی از نقاط توده جلوگیری شود. محلول اسیدی از حوضچه رافینت پمپ شده و به سطح توده پاشیده می‌شود.
محلول باردار جمع‌آوری شده از زیر «هیپ» به حوضچه محلول باردار هدایت می‌شود. محلول باردار از حوضچه «aپی‌ال‌اس» برای استخراج مس به واحد استخراج با حلال پمپ می‌شود. اگر غلظت مس در حوضچه پایین باشد این محلول دوباره روی هیپ برگشت داده می‌شود تا عیار مس آن قابل قبول برای استخراج با حلال باشد. بعد از استحصال مس از محلول باردار در واحد استخراج با حلال، محلول بی‌بار به دست می‌آید که به حوضچه «رافینیت» برگشت داده می‌شود. 

8.      انحلال حوضچه‌ای یا مخزنی کانه‌های اکسیده مس چگونه رخ می‌دهد؟
انحلال حوضچه‌ای یا مخزنی کانه‌های اکسیده مس برای تولید مستقیم محلول محتوی مس با غلظت کافی برای استخراج الکترولیتی به کار می‌رود. در مقایسه با لیچینگ برجا و توده‌ای آهنگ تولید در این روش بالاست و در آن از اسید سولفوریک غلیظ استفاده می‌شود. این روش معمولا برای «لیچینگ آمونیاکی» کنسانتره‌های اکسیدی حاصل از روش ثقلی و لیچینگ آمونیاکی سنگ‌های معدنی حاوی مس آزاد به کار برده می‌شود.
انحلال مخزنی مستلزم فرو بردن کانه‌های خرد شده (با ابعاد کوچک‌تر از یک سانتی‌متر معمولا با ۳مرحله خردایش) در محلول اسید سولفوریک به غلظت ۱۰۰ تا۱۶۵۰ در حوضچه‌های مستطیلی بزرگ است. از مهم‌ترین مزایای این روش بازیابی بالا، تولید محصول باردار با عیار بالا حدود ۸۵ تا ۹۵ (مناسب برای عمل الکترووینینگ) و همچنین حذف فیلتر و تیکنر است.
لیچینگ متلاطم روش انحلال سریعی است که برای ذرات بسیار ریز کانی‌های پرعیار شده اکسیدی مس یا «کلسیت‌های تشویه شده» در محلول‌های اسید غلیظ، با غلظت ۱۰۰-۵۰۰اسید سولفوریک به‌کار می‌رود. در حالی‌که لیچینگ درجا و توده‌ای سال‌ها و لیچینگ حوضچه‌ای روزها به طول می‌انجامد. لیچینگ متلاطم ۲ تا ۸ساعت طول می‌کشد.

 

 

 

 

 

 

 

 

دستگاه اندازه گیری خواص مغناطیسی

آشنایی با دستگاه اندازه‌گیری خواص مغناطیسی (VSM)
با توجه به پیشرفت تکنولوژی در زمینه مغناطیس و کاربردهای وسیع آن ها در زمینه صنعت، نیاز به ابزاری است که بتوان با استفاده از آن خواص مغناطیسی را بررسی کرد. دستگاه های مغناطیس سنج متفاوتی در این راستا وجود دارد که براساس میزان فرکانس جریان های عبوری به چند دسته تقسیم می شوند. دستگاه های مغناطیس سنج به روش های مختلف و در شرایط متفاوت دمایی، میدان مغناطیسی و جهت گیری نمونه، مغناطش یک نمونه از ماده با ابعاد مختلف را اندازه گیری می کنند. اساس کار دستگاه مغناطیس سنج VSM، قانون القای فارادی می باشد که با ارتعاش نمونه و اعمال میدان مغناطیسی به آن، باعث بوجود آمدن یک جریان القایی در سیم پیچ های تعبیه شده در دستگاه می شود که با مغناطش نمونه متناسب است. با انتقال این جریان القایی به کامپیوتر متصل به دستگاه و نمایش حلقه پسماند، مغناطش نمونه اندازه گیری می شود.
1- مقدمه
یکی از مهمترین ویژگی های مواد، خاصیت مغناطیسی آن هاست که از زمان های نسبتا دور مورد توجه بوده و هم اکنون نیز در طیف وسیعی از کاربردهای صنعتی قرار گرفته است. بنابراین برای بررسی خواص مغناطیسی مواد دستگاه هایی برای اندازه گیری خواص مغناطیسی آنها نیاز است که یکی از مهمترین آن ها مغناطیس سنج ها می باشند[1]. با استفاده از دستگاه مغناطیس سنج می توان خواص مغناطیس مواد دیامغناطیس، پارامغناطیس، فرومغناطیس، آنتی فرومغناطیس، فری مغناطیس را بررسی کرد. این دستگاه آزمایشگاهی در سال 1956 توسط سایمون فونر (Simon Foner)، استاد دانشگاه MIT اختراع شد و کمپانی EGG PAR (EGG Princeton Applied Research) در دهه شصت آن را تجاری سازی کرد[2]. دستگاه مغناطیس سنج برای مشخص کردن خواص مغناطیسی مواد مانند ممان مغناطیسی و میدان بازدارنده بصورت تابعی از میدان مغناطیسی، دما و زمان بکار می روند. موادی که با استفاده از دستگاه VSM، می توان خواص مغناطیسی آنها را اندازه گیری کرد عبارتند از: فیلم های نازک، پودرها و مایعات [3 ]. برای درک بیشتر دستگاه مغناطیس سنج ابتدا منشا خاصیت مغناطیسی، فازهای مغناطیسی و حلقه پسماند که به نوعی بیان تصویری مغناطش ماده است، به اختصار بیان می شود.

2- منشا مغناطیس مواد
منشاء خاصیت مغناطیسی در جامدها، الکترون های متحرک می باشند. گرچه بعضی از هسته های اتمی دارای گشتاور دو قطبی مغناطیسی دایمی هستند ولی اثر آنها چنان ضعیف است که نمی تواند آثار قابل ملاحظه ای داشته باشد؛ مگر تحت شرایط خاص مانند اینکه نمونه در زیر دمای یک درجه کلوین قرار گیرد یا وقتی که تحت میدان الکترومغناطیسی با فرکانسی قرار گیرد که حرکت تقدیمی هسته ها را تشدید نماید. در بدو ظهور نظریات مغناطیس آزمایش های زیادی نشان داد که اندازه حرکت زاویه ای کل یک الکترون و گشتاور مغناطیسی وابسته به آن بزرگتر از مقداری است که به حرکت انتقالی آن نسبت داده می شد. بنابرین یک سهم اضافی که از خصوصیت ذاتی با یک درجه آزادی داخلی ناشی می شد، به الکترون نسبت داده شد و چون این خصوصیت دارای اثر مشابه چرخش الکترون حول محورش بود اسپین نامیده گردید[4].

شکل 1-حرکت الکترون حول هسته

تعیین جهت گیری مغناطیسی نسبی الکترون های واقع در یک یون که در یک شبکه بلوری قرارگرفته به برهمکنش بین الکترونها بستگی دارد که در حالت کلی برهمکنش های میان الکترون ها را به سه دسته تقسیم می¬کنند:
1) برهمکنش کولنی
2) برهمکنش اسپین مداری
3) اثر میدان بلوری
3. فازهای مغناطیسی:
مواد در میدان مغناطیسی خارجی رفتار متفاوتی از خود نشان می دهند و با توجه به جهت گیری مغناطش، به چند دسته تقسیم می شوند:
مواد پارا مغناطیس: این مواد از اتم هایی تشکیل شده اند که گشتاور مغناطیسی دائم اتمی دارند اما بصورت مجزا و بدون هیچ برهمکنش متقابلی بر روی یکدیگر عمل می کنند که در نهایت، جهت گیری تصادفی دارند.جهت گیری مغناطش آن مثبت ولی کوچک است و تحت تأثیر یک میدان خارجی، در یک راستای تقریبی قرار می‌گیرند(شکل 2الف).

مواد فرو مغناطیس: موادی هستند که در غیاب میدان مغناطیسی خارجی دارای مغناطش خود به خودی بوده و برخلاف پارامغناطیس، گشتاور های مغناطیسی آن با هم برهمکنش می کنند. این مواد مانند آهن، آهنربایی دائم دارند و یا به آهن ربا جذب می شوند و جهت گیری مغناطش آن کاملا در یک راستا می باشد (شکل 2ب).

مواد آنتی فرو مغناطیس: در مواد آنتی فرومغناطیس، مغناطش حاصل شده، در غیاب میدان خارجی حذف می شود و جهت گیری مغناطش آن به گونه ای است که مغناطش کل صفر می شود(شکل 2ج).

مواد فری مغناطیس: در این مواد، اندازه ی گشتاورهای مغناطیسی در یک جهت بزرگتر از دیگری می باشد و در نتیجه مغناطش خالص ماده صفر نیست و مغناطیس اشباع این مواد کمتر از فرومغناطیس می-باشد(شکل 2د).

مواد دیا مغناطیس: اتم های دیامغناطیس دارای هیچ گشتاور مغناطیسی نمی باشند و با قرارگرفتن در میدان مغناطیسی خارجی دارای گشتاور مغناطیسی القایی در خلاف جهت میدان خارجی می شوند و آن را تضعیف می کنند.
شکل 2-  فازهای مغناطیسی(5 )

3- حلقه پسماند
وقتی به یک ماده مغناطیسی، میدان مغناطیسی اعمال شود، مغناطش محیط سریع افزایش می‌یابد؛ با افزایش مقدار میدان اعمالی، شتاب افزایش مغناطش کاهش می‌یابد؛ این کاهش شتاب ادامه می‌یابد تا مغناطش محیط به مقدار اشباع خود MS برسد[ 6].

شکل 3 - حلقه پسماند برای یک ماده فرومغناطیس

تغییرات مغناطش مواد مغناطیسی در هنگام کاهش میدان، از رفتار قبلی خود تبعیت نمی‌کند؛ بلکه بخاطر ناهمسانگردی مغناطیسی در محیط، مقداری انرژی را در خود ذخیره می‌کنند. بنابر‌این وقتی میدان اعمالی در محیط صفر شود؛ مغناطش در ماده صفر نشده و دارای مقدار خاصی است که به آن مغناطش پسماند Mr گفته می‌شود. با کاهش بیشتر شدت میدان به سمت مقادیر منفی، خاصیت مغناطیسی القا شده به‌تدریج کاهش می‌یابد و با رسیدن شدت میدان به یک مقدار منفی خواص مغناطیسی ماده کاملا از بین می‌رود. این میدان مغناطیس زدا را با HC نشان می دهند و به نیروی ضدپسماند (coercive force) و یا وادارندگی مغناطیسی معروف است. با کاهش بیشتر شدت میدان، القای مغناطیسی منفی می شود و در نهایت به مقادیر اشباع منفی خود، می‌تواند برسد. افزایش مجدد شدت میدان به سمت مقادیر مثبت، حلقه پسماند را مطابق شکل(3)کامل می کند. مغناطیس‌های دائمی غالبا در ربع دوم حلقه پسماند خود، مورد استفاده قرار می گیرند[7]. پسماند یا نیروی وادارنده عبارتست از میدان معکوسی که برای کاهش مغناطش به صفر نیازست.

مواد مغناطیسی از نظر رفتار آن‌ها در میدان مغناطیسی به دو گروه مواد مغناطیسی نرم و سخت تقسیم‌بندی می‌شوند.

1-3- مواد مغناطیسی نرم
مواد مغناطیسی نرم با اعمال میدان مغناطیسی کوچک براحتی مغناطیده می‌شود و با قطع میدان سریعاً گشتاور مغناطیسی خود را از دست می‌دهند. به عبارتی این مواد دارای نیروی وادارندگی پایینی هستند. این مواد همچنین دارای اشباع مغناطیسی بالا MS و گشتاور پسماند Mr پایین‌اند.


شکل 4-حلقه پسماند در مواد فرومغناطیسی نرم و سخت

مواد مغناطیسی نر‌‌م در جاهایی که به تغییر سریع گشتاور مغناطیسی با اعمال میدان مغناطیسی کوچک نیاز است مانند موتورها، هدهای مغناطیسی (magnetic heads)، حسگرها، القاگرها و فیلترهای صوتی مورد استفاده قرار می‌گیرد.

2-3- مواد مغناطیسی سخت
مواد مغناطیسی سخت موادی‌اند که براحتیِ مواد مغناطیسی نرم، مغناطیده نمی‌شوند و به میدان مغناطیسی اعمالی بزرگتری، جهت مغناطیده¬کردن آنها نیاز است. این مواد، گشتاور مغناطیسی را تا مدت‌ها پس از قطع میدان مغناطیسی در خود حفظ می‌کنند. همچنین دارای اشباع مغناطیسی Ms، گشتاور پسماند Mr و نیروی وادارندگی Hc بالایی هستند. ساخت یا پخت این مواد در میدان مغناطیسی، ناهمسانگردی مغناطیسی را در این مواد افزایش می‌دهد؛ که حرکت دیواره‌ حوزه‌ها را سخت‌تر می‌کند و نیروی وادارندگی‌ را افزایش می‌دهد. این امر می‌تواند تولید ماده سخت مغناطیسی بهتری را تضمین کند.کاربرد این مواد در آهنربا‌های دائمی و حافظه‌های مغناطیسی است.

4-  دستگاه مغناطیس‌سنج نمونه ارتعاشی
دستگاه مغناطیس‌سنج نمونه ارتعاشی( VSM=Vibrating Sample Manetometer)، جهت اندازه‌گیری خواص مغناطیسی ماده مغناطیسی به کار می رود. رفتار مغناطیسی مواد مختلف دیامغناطیس، پارامغناطیس، فرومغناطیس و غیره، در شکل‌های مختلف پودر، جامد، فیلم نازک، تک بلور، مایع و غیره، به کمک VSM با رسمِ منحنی پسماند، قابل اندازه‌گیری است[6].

کمیت های قابل اندازه گیری بوسیله VSM عبارتند از(8):
Hm : ماکزیمم میدان اعمالی
Bm : ماکزیمم چگالی شار (القای مغناطیسی) یا Bmi (القای درونی)
Br : خاصیت نگهداری مغناطیس (retentivity)
Hc : وادارندگی یا Hci (وادارندگی درونی)
Br/Bm : نسبت مربعیت
µ : نفوذ پذیری

1-5- اجزای تشکیل دهنده VSM

بطور کلی مغناطیس سنج VSM از سه بخش تشکیل می شود: الف-آهن ربای الکتریکی ب- قسمت مکانیکی ج-مدارها و اجزای الکتریکی. تصویر کلی مغناطیس سنج در شکل(5) نشان داده شده است.

filereader.php?p1=main_43ff194f410f3e93a

filereader.php?p1=main_d3fc3e6e42d7ebd71
شکل 5- طرح واره ای از دستگاه مغناطیس‌سنج نمونه ارتعاشی(6)

1-1-5- آهن ربای الکتریکی
دارای ابعاد خارجی حدود یک متر است و می تواند میدان مغناطیسی در ناحیه ای بین دو قطب به پهنای mm ٥٥ و قطر ایجاد نماید. به منظور خنک نمودن آهن ربا از جریان آب مقطر در لوله های داخل سیستم، استفاده می شود. منبع تغذیه آن جریان DC تا حد ١٤٠ آمپر تولید می نماید و صفحه کنترل کنندة آن در شکل(6) نشان داده شده است[ 8].


شکل 6-منبع تغذیه [8]

2-1-5- قسمت مکانیکی
این قسمت برای نگهداری نمونه در محل مناسب، چرخش آن و تولید نوسانات مکانیکی مناسب، طراحی شده است. قسمت مکانیکی، روی آهن ربای الکتریکی قرار می گیرد و از سه بخش تولید کنندة نوسانِ جابجا کننده، نگهدارندة نمونه، و وسیلة ایزوله کنندة نوسانات تشکیل شده است.
از بوبین میانی (بوبین بطور ساده از پیچه ای سیمی تشکیل شده است)، جریان ac با فرکانس ٨٢ هرتز جهت تولید نوسان، می گذرد. قسمت میانی صفحات فنری، تحت تأثیر نیروی میدانِ نوسانی قرار گرفته و به نوسان در می آیند و همراه با خود، میلة نمونه و در نتیجه نمونة مغناطیسی را در امتداد قائم به نوسان در می آورند. بخش نوسان کننده به صفحات متحرک خازن هایی وصل می شود. نیروی عکسل العمل حاصل از نوسانات که به بوبین و آهن ربا وارد می¬شود، باعث نوسان متقابل آنها می گردد. برای حذف این نوسانات و جلوگیری از انتقال آن به پایه و تشکیل یک میدان استاتیک توسط آهن ربای اصلی، از ایزوله کننده نوسانات استفاده می شود که به عنوان یک تشدید کننده مکانیکی، انرژی نوسانات حاصل از نیروی عکس العمل را جذب می نماید. نمونه که در انتهای یک میلة غیر مغناطیسی نصب می شود، باید دقیقاً در مرکز تقارن سیستم سیم پیچ های مغناطیس سنج( واقع در بین قطب های آهنربای اصلی) قرار بگیرد. محل دقیق نمونه با سه پیچ ویژه که قابلیت حرکت نمونه را در راستاهای مختلف دارد، تنظیم می شود(8).

3-1-5- قسمت الکتریکی
همانطور که قبلا گفته شد نمونه در راستای قائم به نوسان در می آید. سیگنال القا شده در سیم پیچ ها متناسب با مغناطش نمونه و مشخصات نوسانات است که به منظور اندازه گیری مغناطش نمونه، عامل دوم باید حذف گردد. سیگنالی ناشی از خازن متغیر (که به آن اشاره شد) حاصل می شود که تنها به مشخصات نوسانات مکانیکی (عامل دوم)، بستگی دارد. از آنجایی که سیگنال اصلی متناسب با هر دو عامل است، از تفاضل سیگنال اصلی و سیگنال ناشی از خازن و تقویت آن توسط یک تقویت کنندة تفاضلی، مغناطش نمونه اندازه گیری می شود. به این ترتیب، تغییرات احتمالی در عوامل نوسانی روی اندازة بدست آمده برای مغناطش نمونه، اثری نخواهد داشت[8].

2-5- عملکرد دستگاه VSM
دستگاه های مغناطیس سنج، مغناطش یک نمونه از ماده با ابعاد مختلف را به روش های مختلف و در شرایط گوناگون از لحاظ دما، میدان مغناطیسی و جهت گیری نمونه، اندازه گیری می کنند و نمودارهای متنوعی که نشان دهنده ویژگی های متفاوت ماده است را نمایش می دهند. مغناطیس سنج ها براساس میزان فرکانس جریان های عبوری از آنها شامل سیستم های مغناطیس سنج مختلف می باشندکه اساس اندازه گیری آنها مشابه است. برخی از سیستم های مغناطیس سنج عبارتتند از: مغناطیس سنج نمونه مرتعش (VSM)، مغناطیس سنج نمونه چرخان (RSM) و مغناطیس سنج گرادیان نیروی متناوب (AGFM) و [1].

دستگاه VSM بر اساس قانون القای فارادی کار می‌کند. این قانون می‌گوید که تغییر در میدان مغناطیسی، باعث ایجاد میدان الکتریکی می شود. با اندازه‌گیری میدان الکتریکی القا شده، می‌توان اطلاعاتی در مورد تغییرات میدان مغناطیسی بدست آورد. ابتدا نمونه در میدان مغناطیسی ثابت قرار می‌گیرد. اگر نمونه مغناطیسی باشد، میدان مغناطیسی ثابت، نمونه را با هم جهت کردن حوزه‌های مغناطیسی یا اسپین‌های مغناطیسی اتم‌ها در جهت میدان، مغناطیسی می‌کند. میدان مغناطیسی بزرگتر، نمونه را بیشتر مغناطیسی می‌کند. ممان مغناطیسی نمونه، میدان مغناطیسی را در اطراف نمونه القا می‌کند. حال اگر نمونه به بالا و پایین ارتعاش کند، میدان مغناطیسی القایی با زمان تغییر می‌کند و تغییرات آن را می‌توان با جریان القا شده در یک مجموعه سیم‌پیچ مشاهده کرد. این جریان القایی با مغناطش در نمونه متناسب است. مغناطش قوی‌تر جریان القایی بزرگتری را ایجاد می‌کند. جریان القایی تقویت می‌شود و به کامپیوتری که به مجموعه متصل است، برای نمایش منتقل می‌شود. با کمک نرم‌افزار می‌توان نتایج را کنترل کرد و نمایش داد. این سامانه مقدار و نحوه مغناطش نمونه را به صورت تابعی از شدت تغییرات میدان مغناطیسی ثابت اعمالی، مشخص می کند. نمونه‌ای که در میدان مغناطیسی ثابتی قرار گرفته و به طور مکانیکی و با حرکت سینوسی در حال ارتعاش است با تغییر شار مغناطیسی، نیرو محرکه‌ای را در مجموعه سیم‌پیچ‌ها القا می‌کند. شار مغناطیسی از رابطه زیر بدست می آید:
که در آن A و B فاکتورهای هندسی‌اند که به مجموعه سیم‌پیچ‌ها مرتبط می‌شوند، D و MS به ترتیب ضریب مغناطش زدایی و مغناطش ذره‌اند، و ω فرکانس ارتعاش می باشد. بنابراین نیروی محرکه به صورت زیر بدست می آید:

‌که C یک ثابت است و مقدار آن را می‌توان با توجه به مغناطش نیکل استاندارد، که مقدار آن شناخته شده است، تعیین کرد(6).
در این سیستم مبنای اندازه گیری مغناطش، سیگنال حاصل از نوسانات مکانیکی نمونه است که در یک سری سیم پیچ حساس القا می شود. این سیگنال با ممان مغناطیسی نمونه رابطة خطی دارد . نمونه ها به صورت نسبی مقایسه می شوند. به این منظور، یک استاندارد کالیبره شده از ممان مغناطیسی مثلاً کره کوچک استاندارد شده¬ای از نیکل خالص، تهیه می شود[8].

نتیجه گیری:
برای بررسی خواص مغناطیسی مواد، دستگاه هایی برای اندازه گیری خواص مغناطیسی نیاز است که یکی از اصلی ترین آن ها مغناطیس سنج ها هستند. با استفاده از دستگاه مغناطیس  سنج می توان خواص مغناطیسی مواد دیامغناطیس، پارامغناطیس، فرومغناطیس، آنتی فرومغناطیس، فری مغناطیس را بررسی کرد. دستگاه های مغناطیس سنج مغناطش یک نمونه از ماده با ابعاد مختلف را به روشهای مختلف و در شرایط گوناگون از لحاظ دما، میدان مغناطیسی و جهت گیری نمونه، اندازه گیری می کنند و نمودارهای متنوعی که نشان دهنده ویژگی های متفاوت است را نمایش می دهند.